已知一个函数rand7()能够生成1-7的随机数,请给出一个函数rand10(),该函数能够生成1-10的随机数。

给定rand7()生成1-7的随机数,通过拒绝采样法,设计rand10()函数实现1-10的随机数生成。通过多次调用rand7并进行条件判断,优化生成过程,降低平均调用次数。
摘要由CSDN通过智能技术生成

题目:

已知一个函数rand7()能够生成1-7的随机数,请给出一个函数,该函数能够生成1-10的随机数。


思路:

假如已知一个函数能够生成1-49的随机数,那么如何以此生成1-10的随机数呢?


解法:

该解法基于一种叫做拒绝采样的方法。主要思想是只要产生一个目标范围内的随机数,则直接返回。如果产生的随机数不在目标范围内,则丢弃该值,重新取样。由于目标范围内的数字被选中的概率相等,这样一个均匀的分布生成了。

显然rand7至少需要执行2次,否则产生不了1-10的数字。通过运行rand7两次,可以生成1-49的整数,

   1  2  3  4  5  6  7
1  1  2  3  4  5  6  7
2  8  9 10  1  2  3  4
3  
在MATLAB中,如果你已经知道某个连续随机变量的密度函数(probability density function, PDF),你可以使用`rand`函数配合自定义的累积分布函数(cumulative distribution function, CDF)来生成符合该分布的随机数。 首先,你需要确保你有该随机变量PDF的数学形式或Matlab表达式。假设我们有一个名为`f(x)`的PDF函数,然后我们需要计算对应的CDF,记作`F(x)`。CDF是在所有小于等于x的值的概率之和。 生成步骤通常是这样的: 1. **定义CDF**: - 如果PDF可以用简单的积分求得,你可能可以直接写出`F(x) = integral(f(t), t=负无穷到x)`。如果无法直接求解,可能需要用到数值积分方法,如`integral(@(t)f(t), -Inf, x)`。 - 对于特殊的分布(比如正态、均匀、指数等),CDF通常有标准的解析公式。 2. **逆CDF(Quantile Function)**: - 有时候CDF没有解析形式,但我们可以用数值方法找到它的逆,即`Q(p) = F^(-1)(p)`,这个`Q`就是需要找的随机数所对应的x值,使得`F(Q(p)) = p`。 3. **生成随机数**: - 使用`q = Q(rand())`,其中`rand()`生成0到1之间的随机数,`q`就是根据你的CDF生成随机数。 例如,如果你有一个具体的PDF,比如正态分布`N(μ, σ^2)`,可以这样做: ```matlab % 定义均值和方差 mu = 0; sigma = 1; % 正态分布的PDF和CDF pdf = @(x) normpdf(x, mu, sigma); cdf = @(x) normcdf(x, mu, sigma); % 创建一个随机数生成器 p = rand(); % 生成随机数 x = inverse_cdf(cdf, p); % 假设inverse_cdf是你自己定义的逆CDF函数,或使用`norminv`代替 ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值