机器学习
文章平均质量分 65
记录机器学习小白成长路上遇到的问题
来日可期1314
世界是个无限循环
展开
-
如何确定聚类簇数 (k)
原创 2022-03-02 21:07:55 · 1904 阅读 · 0 评论 -
遗传算法自问自答
目录标题1. 遗传算法的选择算子为什么用在交叉算子,变异算子的前面?2. 遗传算法中,有哪些选择算子?3. 遗传算法中,有哪些交叉算子?4. 异或 `^`运算的思考。5. 对于4中对于异或的疑问,都是来自于这段代码:6. 遗传算法中,有哪些变异算子?1. 遗传算法的选择算子为什么用在交叉算子,变异算子的前面?答: 选择算子的目的是选择哪些个体参与交叉与变异,其余的个体不参与交叉与变异,但是会作为parent参与offspring的比较,如果获胜,任然有机会存在于种群;如果失败,则会被淘汰。所以,选择算原创 2022-02-27 21:15:53 · 1215 阅读 · 0 评论 -
对数互换公式证明
nlog2m=mlog2n(1)n^{\log_2m} = m^{\log_2n} \tag{1}nlog2m=mlog2n(1)证明:nlog2m=mlogmnlog2m=mlog2m×logmnn^{\log_2m} = m^{\log_m{n^{\log_2m}}} \\=m^{\log_2m\times \log_mn}nlog2m=mlogmnlog2m=mlog2m×logmn换底公式:logmb=lognblognm\log_mb=\frac{\log原创 2021-12-24 13:54:14 · 1847 阅读 · 0 评论 -
Cassandra安装与基础操作
这里写目录标题1. Cassandra 安装:1.1. CentOS安装1.2. Windows安装2. Cassandra的命令2.1 键2.2 表3. Cassandra的python编程1. Cassandra 安装:官网1.1. CentOS安装Installation from RPM packagesFor the `` specify the major version number, without dot, and with an appended x.The latest原创 2021-12-12 21:05:47 · 2705 阅读 · 0 评论 -
图聚类 - 显示聚类效果
在前面讲到通过高程信息进行地图建模:本次博客主要是分享对地图节点聚类效果的可视化数据:255,255,255,255,255,255,255,255,255,255,255,255,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255255,255,255,255,255,255,255,255,255,255,255,255,0,255,255,255,255,255,255,255,255,255,255,255,255,2原创 2021-11-21 16:06:56 · 666 阅读 · 0 评论 -
现代优化算法
支持向量机支持向量回归核函数核方法替代损失函数硬间隔 软间隔正则化LpL_pLp范数原创 2021-11-09 21:34:13 · 930 阅读 · 0 评论 -
图聚类 - 地图建模
图论的基础是三元组,点集,边集,权重函数。然而在实际的地图中,我们只知道地图(row,col)的值,可能表示海拔,也可能表示坡度,形式上就是一个二元矩阵。形如此图:表示的矩阵:在这个矩阵中,255表示普通节点(不是障碍物),0表示障碍物。转换为邻接矩阵,并画出点线图(代码):import cv2import numpy as np# from MCL import markovClusterimport matplotlib.pyplot as pyobstacle = 0unO原创 2021-11-09 17:40:40 · 1593 阅读 · 0 评论 -
协同路径规划
1. 背景介绍区别与点对点的路径规划,本文讲的协同路径规划的目标是多车协同覆盖扫描一个区域。从图中容易知道,黑色的栅格代表障碍物,蓝色的小点代表着小车,用不同颜色的线段代表为每个小车规划的路径。通过上述的讲解,相信已经理解到我所说的协同覆盖扫描一个区域指的是什么了。与上述的情况不一样的是,现在存在一个应用场景,小车随机分布在地图上(有的在目标区域内部,有的则在区域外部),要求给出一个最佳的扫描方案:派出哪几辆车执行扫描任务最佳,给出每个小车的路径。值得注意的是,这个有个隐藏的问题,如果区域外的小车要原创 2021-10-04 15:42:58 · 3654 阅读 · 4 评论 -
人工智能、机器学习和深度学习的区别?
人工智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们耳边:人工智能(Artificial Intelligence)、机器学习(Machine Learning)、深度学习(Deep Learning)。不少人对这些高频词汇的含义及其背后的关系总是似懂非懂、一知半解。为了帮助大家更好地理解人工智能,这篇文章用最简单的语言解释了这些词汇的含义,理清它们之间的关系,希望对刚入门的同行有所帮助。人工智能:从概念提出到走向繁荣1956年,几个计算机科学家相聚在达特茅斯会议,提出了“人工智能”的概念,梦想着用当转载 2021-09-28 22:07:15 · 313 阅读 · 0 评论 -
聚类(综述)
聚类1. 聚类任务2. 性能度量3. 距离计算4. 原型聚类5. 密度聚类6. 层次聚类1. 聚类任务在无监督学习中(unsupervised learning)中,训练样本的标记是未知的,目标是通过对无标记数据的学习来揭示数据内在性质与规律,为进一步的数据分析提供基础。2. 性能度量连续属性的性能度量:外部指标:内部指标:离散属性的性能度量:3. 距离计算闵可夫斯基距离→\to→ p范数4. 原型聚类k均值算法学习向量量化(lvq)高斯混合聚类5. 密度聚类DBSCAN原创 2021-09-22 22:01:49 · 178 阅读 · 0 评论 -
向量、矩阵范数
范数向量范数1. LpL_pLp范数1.1 L0L_0L0范数1.2 L1L_1L1范数1.3 L2L_2L2范数1.4 L∞L_{\infty}L∞范数矩阵范数向量范数1. LpL_pLp范数LpL_pLp范数是一系列范数的一般表示形式,包括L0L_0L0范数, L1L_1L1范数,L2L_2L2范数…∥x∥p=∑i∣xi∣pp\|\mathbf{x}\|_p=\sqrt[p]{\sum_i{|x_i|^p}}∥x∥p=pi∑∣xi∣p1.1 L0L_0L0范数原创 2021-09-13 17:20:50 · 362 阅读 · 1 评论 -
理解查全率(precision)与查准率(recall)
@TOC1. 概念解读在一个二分类问题中,非对既是错真实情况\预测情况positivenegativeTrueTPTNFalseFPFNNotice: 上面的图表是个反例,错误的原因是T\F的使用,T代表着预测正确,F代表着预测错误。真实情况\预测情况positivenegativeTrueTPFNFalseFPTN查全率precison=TPTP+FN\textrm{precison}=\frac{\mathr原创 2021-09-05 19:58:24 · 3580 阅读 · 1 评论 -
pytorch
pytorch全连接神经网络:梯度计算:误差函数:优化算法:初始化情况学习速率Escape minima(动量)kaggle:激活函数及其梯度:RELU(0~1)Sigmod(0~1)Tanh(-1~1)阶梯函数Question:1.梯度是向量,方向指向增长最快的方向ANSERSER:1.梯度的反方向:函数下降最快的方向2.为什么一直沿着梯度反方向,就能到达低点:每一步都走梯度下降最快的方向(这里是无法知道最低点的位置的,只能知道现在位置的梯度方向),详情考虑原创 2021-07-12 16:54:21 · 91 阅读 · 0 评论 -
线性感知器
线性感知器上一篇博客讲解的是感知器,本次通过线性感知器引入优化算法的概念,本次使用的优化算法是随机梯度下降算法。感受:激活函数是线性感知器的灵魂,控制者线性感知器的输出的数值范围,以及优化算法的具体实现,因为优化算法的下降梯度与激活函数的梯度有关。线性单元的参数修改规则:wnew=wold+η∑i=0n(y(i)−y‾(i))x(i)w_{new}=w_{old}+\eta\sum_{i=0}^n(y^{(i)}-\overline{y}^{(i)})x^{(i)}wnew=wold+ηi=0∑原创 2021-06-07 00:17:27 · 294 阅读 · 0 评论 -
用java实现神经网络的组成单元:感知器
感知器最近看到一篇博客,由浅入深地讲解了机器学习中的神经网络,但是由于它其中的实现代码是python,我也想更加深入的了解一波儿,就用java也实现了一套,实现功能是一样的。这里的代码是实现对于一个感知器的神经网络,输入是二维向量,输出一个数(0,1),通过简单的学习实现对于and 和 or 运算的拟合import java.util.Arrays;public class SensorNetwork { //表示感知器网络结构 private int[] netStuctArra原创 2021-06-06 17:29:06 · 194 阅读 · 0 评论 -
离散数学入门级概念:集合、关系、元组
前言:对于博客中提出的问题的解答习题 1:{0,1,{0,1},{1,2}} 有几个元素? 机器学习中, 这类形式的集合有什么优点和缺点?————————————————答:根据集合的定义可以知道,上述的集合有四个四个元素,分别是0,1,{0,1},{1,2}。关于在机器学习中的优缺点,目前而来还没有比较深刻的体会。这次就对数据结构层次的优缺点进行表述,优点:可以便利的进行便利;缺点:在查找的时候遍历深度可以会很高。习题 2: ∅ 的基数是多少? { ∅ }呢?—————————————原创 2021-05-02 22:57:15 · 976 阅读 · 0 评论 -
挖掘& 0xFF深层的含义
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、前置知识?1.原码,补码,反码二、挖掘& 0xFF深层的含义总结前言int unsignedbyte = b & 0xFF;上面的这段代码相信会较为容易的经常看到,但是我们往往会忽略为什么要这样,不这样行不行。接下来就此段代码,挖掘它的深层的含义。一、前置知识?1.原码,补码,反码定义那些我在这儿就不在赘述了,我分享一下我的理解。众所周知,冯诺依曼体系结构的计算机的一大特点就是数据原创 2021-04-16 20:17:44 · 417 阅读 · 0 评论