BZOJ 2339 [HNOI2011]卡农

本文介绍了一种解决特定组合数学问题的方法,通过计算不同排列方案的数量,并修正其中的重复和非法情况,最终得出正确的答案。文章提供了一段C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里写图片描述


Solution

组合数学渣,凉凉系列
我们可以先计算顺序不同算不同种的方案,然后除以m!(乘它的逆元)
我们可以设f[i]表示前i段的方案数,我们考虑f[i]怎么计算。
可以知道有2n12n−1中片段,当选出i-1个之后,最后一个必然确定,则有Ai12n1A2n−1i−1种方案,
但是这样显然有重复的和不合法的,
1、前i-1个集合中每个数的出现次数均为偶数,那么第i个集合就是空集,是不满足的。所以要减去f[i-1]
2、推出第i个集合后,前i-1个集合中有一个是与它相同的。因为把这两个相同的集合去掉后,剩下的集合是一定满足题目条件的,所以剩下集合的方案数就是f[i-2],然后这两个集合的方案数就是(2n1)(i2)(2n−1)−(i−2),乘起来即可。
f[i]=Ai12n1f[i1](i1)((2n1)(i2))f[i2];f[i]=A2n−1i−1−f[i−1]−(i−1)∗((2n−1)−(i−2))∗f[i−2];


#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;

#define N 1000010
#define P 100000007
#define LL long long

LL n,m;
LL f[N],g[N],ans,p,q,c;

LL ksm(LL x,int k)
{
    if (k==0) return 1;
    if (k==1) return x;
    LL t=ksm(x,k/2);
    if (k%2==0) return t*t%P;
      else return t*t%P*x%P;
}

int main()
{
    scanf("%lld%lld",&n,&m);
    c=(ksm(2,n)-1+P)%P;
    p=1;
    for (LL i=2;i<=m;i++) p=p*i%P;
    q=ksm(p,P-2);
    f[0]=f[1]=f[2]=0;
    g[0]=g[1]=1; g[2]=c;
    for (LL i=3;i<=m;i++)
    {
        g[i]=g[i-1]*(c-i+2)%P;
      f[i]=(g[i]-f[i-1]-(c-(i-2))*f[i-2]%P*(i-1)%P+P+P)%P;
    }
    f[m]=f[m]*q%P;
    printf("%lld\n",f[m]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值