P3382 【模板】三分法

本文介绍了一种利用三分法解决函数单调区间问题的算法,通过实数系数的二次或更高次函数,找到满足特定条件的极值点。关键步骤包括设置边界、计算函数值并根据比较调整区间。小技巧包括使用秦九韶算法加速计算,确保精度。
摘要由CSDN通过智能技术生成


原题链接

P3382
题目类型: 普 及 / 提 高 − {\color{yellow} 普及/提高-} /
AC记录:Accepted

题目大意

给你一个数列,你需要下面两种操作:

如题,给出一个 n n n 次函数,保证在范围 [ l , r ] [l,r] [l,r] 内存在一点 x x x,使得 [ l , r ] [l,r] [l,r]上单调增, [ x , r ] [x,r] [x,r]上单调减。试求出 x x x的值。

输入格式

第一行包含一个正整数 n n n和两个实数 l , r l,r l,r,含义如题目描述所示。
第二行包含 n + 1 n+1 n+1个实数,从高到低依次表示该 N N N次函数各项的系数。

输出格式

输出为一行,包含一个实数,即为 x x x的值。若你的答案和标准答案的绝对误差不超过 1 0 − 5 10^{-5} 105则算正确。

S a m p l e \mathbf{Sample} Sample I n p u t \mathbf{Input} Input

3 -0.9981 0.5
1 -3 -3 1

S a m p l e \mathbf{Sample} Sample O u t p u t \mathbf{Output} Output

-0.41421

H i n t & E x p l a i n \mathbf{Hint\&Explain} Hint&Explain
在这里插入图片描述

数据范围

对于 100 % 100\% 100%的数据, 6 ≤ n ≤ 13 6\le n\le 13 6n13,函数系数均在 [ − 100 , 100 ] [-100,100] [100,100]内且至多 15 15 15位小数, ∣ l ∣ , ∣ r ∣ ≤ 10 |l|,|r|\le 10 l,r10且至多 15 15 15位小数。 l ≤ r l\le r lr

解题思路

这是一道三分法的模板题。


三分法和二分法非常像,就是把原来的用一个点分成两段改成了用两个点分成三段。设第一个点为 x x x,第二个点为 y y y,题目给我们的 n n n次函数为 f ( x ) f(x) f(x),以下同。
三分的策略为:

1. 如 果 f ( x ) < f ( y ) , 则 舍 去 左 半 段 \color{red}1.如果f(x)<f(y),则舍去左半段 1.f(x)<f(y),
2. 如 果 f ( x ) > f ( y ) , 则 舍 去 右 半 段 \color{orange}2.如果f(x)>f(y),则舍去右半段 2.f(x)>f(y),
3. 重 复 1 , 2 直 到 ∣ l − r ∣ ≤ 1 0 − 5 \color{green}3.重复1,2直到|l-r|\le 10^{-5} 3.1,2lr105

按着这个做就可以了。


小技巧

1.通常人们会把区间分成三等分,其实只要把 x x x设成 m i d − 1 0 − 5 mid-10^{-5} mid105 y y y设成 m i d + 1 0 − 5 mid+10^{-5} mid+105就可以了。这样就可以在每一次舍弃区间时都舍掉将近 1 2 \frac{1}{2} 21的长度,提高效率。
2.在计算函数的时候用秦九韶算法,提高效率。


最后,祝大家早日
请添加图片描述

上代码

#include<iostream>
#include<cmath>

using namespace std;

double eps=1e-7;
int n;
double l,r;
double num[23];

double f(double x)
{
    double sum=0;
    for(int i=1; i<=n+1; i++)
        sum=sum*x+num[i];
    return sum;
}

int main()
{
    cin>>n;
    cin>>l>>r;
    for(int i=1; i<=n+1; i++)
        cin>>num[i];
    while(fabs(l-r)>eps)
    {
        double mid=(l+r)/2.0;
        if(f(mid-eps)<f(mid+eps))
            l=mid;
        else
            r=mid;
    }
    cout<<l<<endl;
    return 0;
}

完美切题 ∼ \sim

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值