无界稠密线性序字典积时态逻辑的可判定性与复杂度:基于镶嵌法的研究
1. 引言
镶嵌法源于代数逻辑,该方法证明了模型的存在等价于满足某些条件的有限部分模型集合的存在。它也被用于证明线性时间流上时态逻辑的完备性和可判定性。为了使用时态逻辑等专门系统,需要将它们相互组合,这促使了线性时间流组合技术的发展,如经典的笛卡尔积运算。在模态逻辑中,Kripke框架的字典积运算作为笛卡尔积运算的变体被引入,它也用于从非标准分析的角度定义用于时间表示和时态推理的不同语言的语义基础。
本文的目的是应用镶嵌法,为无界稠密线性序字典积的时态逻辑所产生的可满足性问题提供一个非确定性多项式时间的完整决策程序。
2. 无界稠密线性序的乘积
设 $F_1 = (T_1, <_1)$ 和 $F_2 = (T_2, <_2)$ 为线性序,它们的字典积是结构 $F = (T, \prec_1, \prec_2)$,其中:
- $T = T_1 \times T_2$
- $\prec_1$ 和 $\prec_2$ 是 $T$ 上的二元关系,定义为 $(s_1, s_2) \prec_1 (t_1, t_2)$ 当且仅当 $s_1 <_1 t_1$;$(s_1, s_2) \prec_2 (t_1, t_2)$ 当且仅当 $s_1 = t_1$ 且 $s_2 <_2 t_2$。
我们定义 $T$ 上的二元关系 $\prec$ 为 $(s_1, s_2) \prec (t_1, t_2)$ 当且仅当 $(s_1, s_2) \prec_1 (t_1, t_2)$ 或 $(s_1, s_2) \prec (t_1, t_2)$。字典积运
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



