什么是哈希算法?
散列表,又叫哈希表,它是基于快速存取的角度设计的,也是一种典型的“空间换时间”的做法。顾名思义,该数据结构可以理解为一个线性表,但是其中的元素不是紧密排列的,而是可能存在空隙。
散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。
比如我们存储70个元素,但我们可能为这70个元素申请了100个元素的空间。70/100=0.7,这个数字称为负载因子。我们之所以这样做,也 是为了“快速存取”的目的。我们基于一种结果尽可能随机平均分布的固定函数H为每个元素安排存储位置,这样就可以避免遍历性质的线性搜索,以达到快速存取。但是由于此随机性,也必然导致一个问题就是冲突。所谓冲突,即两个元素通过散列函数H得到的地址相同,那么这两个元素称为“同义词”。
解决冲突是一个复杂问题。冲突主要取决于:
-
散列函数,一个好的散列函数的值应尽可能平均分布。
-
处理冲突方法。
-
负载因子的大小。太大不一定就好,而且浪费空间严重,负载因子和散列函数是联动的。
解决冲突的办法:
-
线性探查法:冲突后,线性向前试探,找到最近的一个空位置。缺点是会出现堆积现象。存取时,可能不是同义词的词也位于探查序列,影响效率。
-
双散列函数法:在位置d冲突后,再次使用另一个散列函数产生一个与散列表桶容量m互质的数c,依次试探(d+n*c)%m,使探查序列跳跃式分布。
常用的构造散列函数的方法:
散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位:
-
直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a?key + b,其中a和b为常数(这种散列函数叫做自身函数)
-
数字分析法:分析一组数据,比如一组员工的出生年月日,这时我们发现出生年月日的前几位数字大体相同,这样的话,出现冲突的几率就会很大,但是我们发现年月日的后几位表示月份和具体日期的数字差别很大,如果用后面的数字来构成散列地址,则冲突的几率会明显降低。因此数字分析法就是找出数字的规律,尽可能利用这些数据来构造冲突几率较低的散列地址。
-
平方取中法:取关键字平方后的中间几位作为散列地址。
-
折叠法:将关键字分割成位数相同的几部分,最后一部分位数可以不同,然后取这几部分的叠加和(去除进位)作为散列地址。
-
随机数法:选择一随机函数,取关键字的随机值作为散列地址,通常用于关键字长度不同的场合。
-
除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p, p<=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。
什么是二叉树?
在计算机科学中,二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。
一棵深度为k,且有2^k-1个结点的二叉树,称为满二叉树。这种树的特点是每一层上的结点数都是最大结点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且或者最后一层是满的,或者是在右边缺少连续若干结点,则此二叉树为完全二叉树。具有n个结点的完全二叉树的深度为floor(log2n)+1。深度为k的完全二叉树,至少有2k-1个叶子结点,至多有2k-1个结点
动态创建二叉树:
- 首先创建树的左节点和右节点类
public class TreeNode {
// 左节点(儿子)
private TreeNode lefTreeNode;
// 右节点(儿子)
private TreeNode rightNode;
// 数据
private int value;
public TreeNode(int value) {
this.value=value;
}
public TreeNode getLefTreeNode() {
return lefTreeNode;
}
public void setLefTreeNode(TreeNode lefTreeNode) {
this.lefTreeNode = lefTreeNode;
}
public TreeNode getRightNode() {
return rightNode;
}
public void setRightNode(TreeNode rightNode) {
this.rightNode = rightNode;
}
public int getValue() {
return value;
}
public void setValue(int value) {
this.value = value;
}
}
- 动态创建二叉树的根,插入数据时,如果节点为空,创建新节点。
public class TreeRoot {
public static void createTree(TreeRoot treeRoot, int value) {
//如果树根为空(第一次访问),将第一个值作为根节点
if (treeRoot.getTreeRoot() == null) {
TreeNode treeNode = new TreeNode(value);
treeRoot.setTreeRoot(treeNode);
} else {
//当前树根
TreeNode tempRoot = treeRoot.getTreeRoot();
while (tempRoot != null) {
//当前值大于根值,往右边走
if (value > tempRoot.getValue()) {
//右边没有树根,那就直接插入
if (tempRoot.getRightNode() == null) {
tempRoot.setRightNode(new TreeNode(value));
return ;
} else {
//如果右边有树根,到右边的树根去
tempRoot = tempRoot.getRightNode();
}
} else {
//左没有树根,那就直接插入
if (tempRoot.getLefTreeNode() == null) {
tempRoot.setLefTreeNode(new TreeNode(value));
return;
} else {
//如果左有树根,到左边的树根去
tempRoot = tempRoot.getLefTreeNode();
}
}
}
}
}
}
- 遍历
public class TreeRoot {
private TreeNode treeRoot;
public TreeNode getTreeRoot() {
return treeRoot;
}
public void setTreeRoot(TreeNode treeRoot) {
this.treeRoot = treeRoot;
}
/**
* 先序遍历
* @param rootTreeNode 根节点
*/
public static void preTraverseBTree(TreeNode rootTreeNode) {
if (rootTreeNode != null) {
//访问根节点
System.out.println(rootTreeNode.getValue());
//访问左节点
preTraverseBTree(rootTreeNode.getLefTreeNode());
//访问右节点
preTraverseBTree(rootTreeNode.getRightNode());
}
}
/**
* 中序遍历
* @param rootTreeNode 根节点
*/
public static void inTraverseBTree(TreeNode rootTreeNode) {
if (rootTreeNode != null) {
//访问左节点
inTraverseBTree(rootTreeNode.getLefTreeNode());
//访问根节点
System.out.println(rootTreeNode.getValue());
//访问右节点
inTraverseBTree(rootTreeNode.getRightNode());
}
}
}
二叉树的遍历:
二叉树遍历分为三种:前序、中序、后序,其中序遍历最为重要。
-
先序遍历:遍历顺序规则为【根左右】 先访问根节点,在左叶子,右叶子
-
中序遍历:遍历顺序规则为【左根右】
-
后序遍历:遍历顺序规则为【左右根】
比如上图正常的一个满节点,A:根节点、B:左节点、C:右节点,前序顺序是ABC(根节点排最先,然后同级先左后右);中序顺序是BAC(先左后根最后右);后序顺序是BCA(先左后右最后根)。
比如上图二叉树遍历结果:
前序遍历:ABCDEFGHK
中序遍历:BDCAEHGKF
后序遍历:DCBHKGFEA
分析中序遍历如下图,中序比较重要,java很多树排序是基于中序。
什么是递归?
程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。但是如果没终止条件会造成死循环,所以递归代码里要有结束自调自的条件。接下来通过一个案例来学习如何使用递归算法计算自然数之和,如例Example1.java。
public class Example1 {
public static void main(String[] args) {
int sum=getsum(4); //调用递归方法,获得1~4的和
System.out.println("sum="+sum); //打印结果
}
//下面的方法使用递归实现求1~n的和
public static int getsum(int n) {
if(n==1){
//满足条件,递归结束
return 1;
}
int temp=getSum(n-1);
return temp+n;
}
}
运行结果:
sun = 10
Example1.java中,定义了一个 getSum()方法用于计算1~n之间自然数之和。例程中的12行代码相当于在 getSum()方法的内部调用了自身,这就是方法的递归,整个递归过在n==1时结束。整个递归过程中 getsum()方法被调用了4次,每次调用时,n的值都会递减。当n的值为1时,所有递归调用的方法都会以相反的顺序相继结束,所有的返回值会进行累加,最终得到结果10。
使用递归时需要注意的问题:
-
递归就是方法里调用自身。
-
在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
-
递归算法代码显得很简洁,但递归算法解题的运行效率较低。所以不提倡用递归设计程序。
-
在递归调用的过程中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等,所以一般不提倡用递归算法设计程序。
-
在做递归算法的时候,一定把握出口,也就是做递归算法必须要有一个明确的递归结束条件。这一点是非常重要的。其实这个出口就是一个条件,当满足了这个条件的时候我们就不再递归了。