自动控制
自动控制基本概念
自动控制发展简史
自动控制的基本原理
自动控制的分类
按输入信号特征分类
恒值系统:输入输出是一个恒值
随动系统:输入信号是一个未知函数,要求输出量跟踪给定量变化
程序控制系统:输入信号是一个已知的时间函数,要求被控量迅速复现给定量
按系统参数特征分类
定常系统
时变系统
按系统数学模型分类
线性系统
非线性系统
按时间变量分类
连续系统
离散系统
按变量数目分类
单变量系统
多变量系统
自动控制的性能指标
稳定性:系统正常工作的基本条件
快速性:表示对自动控制系统动态性能的要求
准确性(稳态误差):系统达到平衡时的精度
控制系统的数学模型
导论
数学模型:描述系统性能的数学表达式,叫做系统的数学模型。
动态模型: 描述系统动态过程的方程式称为动态模型。 如微分 方程、偏微分方程、差分方程等
静态模型: 在静态条件下(即变量的各阶导数为零),描述系统 各变量之间关系的方程式,称为静态模型。
建立系统数学模型的途径
演绎法:通过对系统本身机理(物理、化 学规律)的分析确定模型的 结构和参数,从理论 上推导出系统的数学模型的一种方法。
归纳法:根据对系统的观察,通过测量所得到的大量输入、 输出数据,推断出被研究系统的数学模型
控制系统的微分方程
建立步骤
(1)了解系统组成及各环节之间的传递关系,确定系统输 入、输出变量,系统内部变量,及变量之间的相互关系
(2)从输入端开始按照信号流向,分析各环节的运动机理, 写出描述各环节动态关系的微分方程。
(3)采用微偏线性化等方法对原始微分方程进行简化。
(4)对简化后方程进行推导,消除中间变量,仅保留系统 输入变量和输出变量。
(5)对偏微分方程整理成规范形式,即将输出变量及其各 阶导数项放在等号左边,输入变量及其各阶导数项放在 等号右边,分别按降价顺序排列。
拉普拉斯变换
Laplace变换在解算中的作用
拉普拉斯变换将时域微分方程转换为复数域上的代数方程,通过对代数方程的求解经过拉普拉斯反变换可更便捷轻松地得到原微分方程解
过程为:
①对微分方程进行拉普拉斯变换,将时域转化为复数域代数
②解得到的代数方程得出象函数表达式
③进行拉普拉斯反变换,得到时域解
Laplace变换相关公式
(1) L [ d n d t n f ( t ) ] = s n F ( s ) − ∑ k = 1 n s n − k f ( k − 1 ) ( 0 − ) L[\frac{d^n}{dt^n}f(t)]=s^nF(s)-\sum_{k=1}^{n}s^{n-k}f^{(k-1)}(0^-) L[dtndnf(t)]=snF(s)−k=1∑nsn−kf(k−1)(0−)
最常用的变换,当f(t)及其导数在t=0处初始为零时,第二项舍去
(2) L [ ∫ . . . ∫ f ( t ) d t n ] = F ( s ) s n + ∑ k = 1 n 1 s n − k + 1 [ ∫ . . . ∫ ( d t ) k ] t = 0 − L[\int ...\int f(t)dt^n ]=\frac{F(s)}{s^n}+\sum_{k=1}^n\frac{1}{s^{n-k+1}}{[\int...\int (dt)^k]_{t=0^-}} L[∫...∫f(t)dtn]=snF(s)+k=1∑nsn−k+11[∫...∫(dt)k]t=0−
常用,当f(t)及其各重积分在t=0处为零时舍去第二项
拉普拉斯反变换
部分分式展开
只包含不相同的极点的F(s)的部分分式展开式:
包含多重极点的F(s)部分分式展开式:
控制系统的传递函数描述
概念和性质
定义:线性定常系统的传递函数为零初始条件下,输出量的拉普拉斯变换C(s)与输入量的拉普拉斯变换之比。
数学式: G ( s ) = C ( s ) R ( s ) = b 0 s m + b 1 s m − 1 + . . . + b m − 1 s + b m a 0 s n + a 1 s n − 1 + . . . + a n − 1 s + a n G(s)=\frac{C(s)}{R(s)}=\frac{b_0s^m+b_1s^{m-1}+...+b_{m-1}s+b_m}{a_0s^n+a_1s^{n-1}+...+a_{n-1}s+a_n} G(s)=R(s)C(s)=a0sn+a1sn−1+...+an−1s+anb0sm+b1sm−1+...+bm−1s+bm
典型环节的传递函数
1比例环节
G(s)=K
2惯性环节
G ( s ) = 1 T s + 1 G(s)=\frac{1}{Ts+1} G(s)=Ts+11//按指数上升的环节,有R-C电路,R-L电路等
3积分环节
G
(
s
)
=
1
T
s
G(s)=\frac{1}{Ts}
G(s)=Ts1
4微分环节
G
(
s
)
=
T
s
G(s)=Ts
G(s)=Ts
5比例微分环节
G
(
s
)
=
K
c
(
1
+
T
s
)
G(s)=K_c(1+Ts)
G(s)=Kc(1+Ts)
6振荡环节
G
(
s
)
=
w
n
2
s
2
+
2
w
n
ζ
s
+
w
n
2
G(s)=\frac{w_n^2}{s^2+2w_n\zeta s+w_n^2}
G(s)=s2+2wnζs+wn2wn2
7延滞环节
G
(
s
)
=
e
−
τ
s
G(s)=e^{-\tau s}
G(s)=e−τs
控制系统的结构图
结构图组成和作用
组成:结构图是采用单元方框表示传递函数,信号线表示信号传递方向,引出点对信号进行引出,综合点对信号进行加减运算
作用:使用结构图一方面直观表达出系统各环节联系,另一方面通过结构图的简化容易得到系统总的传递函数
结构图的等效变换
控制系统的信号流图
信号流图的组成与作用
组成:用小圆圈表示的节点有输入输出作用,连接两个节点的支路附带传递函数,从某一节点穿过各支路到另一节点的路径称为通路
作用:与结构图基本类似,结构图简化求传递函数变成了信号流图通过梅逊公式求传递函数。
梅逊公式
公式: G ( s ) = 1 Δ ∑ k = 1 n P k Δ k G(s)=\frac{1}{\Delta }\sum_{k=1}^nP_k\Delta_k G(s)=Δ1∑k=1nPkΔk
①P表示信号流图中的前向通路 //前向通路:从输入节点到输出节点且通过任何节点不多于一次的通路
② Δ = 1 − ∑ L i + ∑ L i L j − ∑ L i L j L k . . . \Delta=1-\sum L_i+\sum L_iL_j-\sum L_iL_jL_k... Δ=1−∑Li+∑LiLj−∑LiLjLk...
第一项的L为每一个不相同回路经过的传函 //回路:起点与终点重合且与任何节点相交不超过一次的通路
第二项的L为两两互不接触的回路经过的传函
第三项的L为三三互不接触的回路经过的传函
依次类推…
③ Δ k \Delta_k Δk为去掉与第k条前向通道相接触的回路传递函数的剩余部分,又或者是去掉相接触回路后再按照 Δ \Delta Δ运算规律得到的式子
控制系统的传递函数
开环传递函数
闭环回路在B(s)处断开,从输入到B(s)处的传递函数 1 + G 1 ( s ) G 2 ( s ) H ( s ) 1+G_1(s)G_2(s)H(s) 1+G1(s)G2(s)H(s)
r(t)作用下的闭环传递函数
令n(t)=0, G B ( s ) = C ( s ) R ( s ) = G 1 ( s ) G 2 ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) G_B(s)=\frac{C(s)}{R(s)}=\frac{G_1(s)G_2(s)}{1+G_1(s)G_2(s)H(s)} GB(s)=R(s)C(s)=1+G1(s)G2(s)H(s)G1(s)G2(s)
n(t)作用下系统的闭环传递函数
令r(t)=0, G B n ( s ) = C n ( s ) N ( s ) = G 2 ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) G_{Bn}(s)=\frac{C_n(s)}{N(s)}=\frac{G_2(s)}{1+G_1(s)G_2(s)H(s)} GBn(s)=N(s)Cn(s)=1+G1(s)G2(s)H(s)G2(s)
系统的总输出
C ∑ ( s ) = C ( s ) + C n ( s ) C_{\sum}(s)=C(s)+C_n(s) C∑(s)=C(s)+Cn(s)
闭环系统的误差传递函数
r(t)作用下, G B e ( s ) = E ( s ) R ( s ) = 1 1 + G 1 ( s ) G 2 ( s ) H ( s ) G_{Be}(s)=\frac{E(s)}{R(s)}=\frac{1}{1+G_1(s)G_2(s)H(s)} GBe(s)=R(s)E(s)=1+G1(s)G2(s)H(s)1
n(t)作用下, G B e n ( s ) = E n ( s ) N ( s ) = − G 2 ( s ) H ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) G_{Ben}(s)=\frac{E_n(s)}{N(s)}=\frac{-G_2(s)H(s)}{1+G_1(s)G_2(s)H(s)} GBen(s)=N(s)En(s)=1+G1(s)G2(s)H(s)−G2(s)H(s)
系统总误差, E ∑ ( s ) = G B e ( s ) R ( s ) + G B e n ( s ) N ( s ) E_{\sum} (s)=G_{Be}(s)R(s)+G_{Ben}(s)N(s) E∑(s)=GBe(s)R(s)+GBen(s)N(s)
闭环系统的特征方程
是上面各式的分母: D ( s ) = 1 + G 1 ( s ) G 2 ( s ) H ( s ) D(s)=1+G_1(s)G_2(s)H(s) D(s)=1+G1(s)G2(s)H(s)