HDU - 4725The Shortest Path in Nya Graph【巧妙构图】

参考大佬的博客写的很好https://blog.csdn.net/shadandeajian/article/details/81298390?biz_id=102&utm_term=HDU%20-%204725&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-1-81298390&spm=1018.2118.3001.4187

题意
t组样例,首先输入n,m,d,表示n个点,m个边,每相邻两层的权值d,下面是n个数,表示第i个点在第a[i]层,下面是m条边,每条边包含三个数u,v,w,表示双向联通点,u,v,之间的权值w,每相邻两层的任意点距离都是d问:点1到点n是否连通,连通的话输出最短距离,否则输出-1.

思路:我们当然可以想到dijkstra(),直接连通相邻层数的所有点,权值为d,但点的个数1e5,开不了那么大的数组,我们可以构建虚拟节点,使每层的虚拟节点与每层的点的权值为零,和相邻层的虚拟节点的权值为d,建图然后模板就可以,(注意n==0时输出-1)具体看代码

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
#include<sstream>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
#define ll long long
const int inf=0x3f3f3f3f;
const int maxn=1000010;
int tot;
 int n,m,d,s=0;
typedef pair<int,int>p1;
struct gg
{
    int v,next,time;

}g[maxn];
int head[maxn],vis[maxn],a[maxn],viss[maxn];
ll dis[maxn];
void add(int u,int v,int time)
{
    g[++tot].v=v;
    g[tot].time=time;
    g[tot].next=head[u];
    head[u]=tot;
}
priority_queue<p1,vector<p1>,greater<p1>>p;
void dijkstra()
{
    while(!p.empty())
        p.pop();
     p.push(make_pair(0,1));
    dis[1]=0;
    while(!p.empty())
    {
        p1 A=p.top();
        p.pop();
        int v=A.second;
        if(vis[v])continue;
        vis[v]=1;
        for(int i=head[v];i!=-1;i=g[i].next)
        {
            int to=g[i].v;
            int time=g[i].time;
            if(dis[to]>dis[v]+time)
               {
                   dis[to]=dis[v]+time;
                   p.push(make_pair(dis[to],to));
               }
        }
    }
    printf("Case #%d: ",++s);
    if(dis[n]<inf)printf("%d\n",dis[n]);
       else printf("-1\n");
}
  solve()
  {
       memset(head,-1,sizeof(head));
     memset(vis,0,sizeof(vis));
     memset(viss,0,sizeof(viss));
     memset(dis,inf,sizeof(dis));
       tot=0;
      cin>>n>>m>>d;
      for(int i=1;i<=n;i++)
        {cin>>a[i];
        viss[a[i]]=1;}//判断每层是否有点
    for(int i=1;i<n;i++)
       {
          if(viss[i]&&viss[i+1])add(i+n,i+1+n,d),add(i+n+1,i+n,d);
           }//如果相邻的两层都有点就把两层的虚拟节点相连
           for(int i=0;i<=n;i++)
           {
               add(a[i]+n,i,0);//把每个点和他所在层数的虚拟节点相连
               if(a[i]>1)add(i,a[i]+n-1,d);//把每个点和他所在层数的虚拟节点的上一层虚拟节点相连
               if(a[i]<n)add(i,a[i]+n+1,d);//把每个点和他所在层数的虚拟节点的下一层虚拟节点相连
           }
    for(int i=0;i<m;i++)
    {
        int u,v,w;
        cin>>u>>v>>w;
        add(u,v,w);
        add(v,u,w);
    }
    dijkstra();
  }
int main()
{ int t;
   ios::sync_with_stdio(0);
  cin>>t;
  while(t--)
    {
        solve();
}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值