数据结构-栈应用(中缀转后缀并计算结果)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sssssuuuuu666/article/details/78838386
关于中缀和后缀表达式基础概念自行百度。
对于中缀转后缀表达式并计算结果思路可归纳为以下:
1、将每个数据当做一个结构体,包含对应的类型以及数值;
2、对于给定的中缀表达式,转为结构体数组,进行后缀表达式的转换;
3、对于转换完成后的表达式进行计算,返回结果。

一、如何将中缀表达式转换为后缀表达式:

先给一个不涉及括号的中缀表达式,通过图简单缕一下转换到后缀表达式的方法:
    //2 + 3 * 4 + 5
    vector<Cell> arr = {
        {OP_NUM,2},
        { OP_SYMBOL,OP_SUB },
        { OP_NUM,3 },
        { OP_SYMBOL,OP_MUL },
        { OP_NUM,4 },
        { OP_SYMBOL,OP_ADD },
        { OP_NUM,5 },
    };

这里写图片描述


转换完成后,可通过调试查看expc数组的元素值正如我们所画的那样:

这里写图片描述


但是在正常的简单运算中,不光只有加减乘除还有括号。在自己实现时可以先实现不带括号的转换过程,再按照带括号的转换规则进行稍微的修改即可。
转换原则:(对于自己实现的代码有所修改)
注:实现代码中的tmp数组始终保存的是已经完成中缀到后缀转换过程的操作数或操作符。
1.当读到一个操作数时,立即将它放到tmp数组中。第一个操作符则直接放入栈中。遇到左圆括号也入栈中;
2.如果遇到一个右括号,那么就将栈元素弹出,将符号转入tmp数组直到遇到一个对应的左括号。但是这个左括号只被弹出,并不转入tmp数组;
3.在读到操作符时,如果此时栈顶操作符优先性大于或等于此操作符,弹出栈顶操作符直到发现优先级更低的元素位置。除了处理)的时候,否则决不从栈中移走”(”。操作符中,+-优先级最低,()优先级最高。
4.如果读到输入的末尾,将栈元素弹出到tmp中,直到该栈变成空栈;
到此完成中缀到后缀的转换,转换后的结果重新拷贝回原expc数组,进行之后的运算。

再附上一个带括号的中缀表达式转换:
可以复制代码到编译器中,自己一步一步调试查看过程。
中缀表达式:2 * ( 3 + 4 * 2 ) - 6 + 4 / 2
后缀表达式:2 3 4 2 * + * 6 - 4 2 / +

这里写图片描述


二、使用后缀表达式计算结果:

此时就只剩下了+,-,*,/四则运算;使用一开始的例子通过图来了解:

这里写图片描述


基本实现:
//RPN.h

#pragma once

#include <vector>
#include <stack>
#include <assert.h>
using namespace std;

enum OP_TYPE
{
    OP_NUM,     //操作数
    OP_SYMBOL,  //操作符
    OP_ADD,     //加法   2
    OP_SUB,     //减法   3 
    OP_MUL,     //乘法  4
    OP_DIV,     //除法   5
    OP_LBAC,    //左括号 6 
    OP_RBAC     //右括号 7
    //...
};

//数据单元 每一个数据分成两部分
struct Cell
{
    OP_TYPE _type;
    int _value;
};


class RPN
{
public:
    //给定中缀表达式转后缀
    RPN(vector<Cell>& expc, size_t n)
    {
        //1.中缀转后缀之后
        MidToLast(expc,n);

        //2.拷贝到_rpn
        size_t count = expc.size();

        for (size_t i = 0; i < count; i++)
            _rpn.push_back(expc[i]);
    }

    //中缀转后缀函数
    void MidToLast(vector<Cell>& expc,size_t n)
    {
        stack<Cell> s;
        vector<Cell> tmp;
        for (size_t i = 0; i < n; i++)
        {
            //如果遇到操作数,我们就直接将其输出。
            if (expc[i]._type == OP_NUM)
            {
                tmp.push_back(expc[i]);
            }
            //操作符分情况讨论
            else if (expc[i]._type == OP_SYMBOL)
            {
                if (!s.empty())
                {
                    //如果是+ - ,则一直pop,除非遇到空或遇到左括号
                    if (expc[i]._value == OP_ADD || expc[i]._value == OP_SUB)
                    {

                        while (!s.empty() && s.top()._value != OP_LBAC)
                        {
                            tmp.push_back(s.top());
                            s.pop();
                        }
                        s.push(expc[i]);
                    }
                    //乘除运算符:
                    else if (expc[i]._value == OP_MUL || expc[i]._value == OP_DIV)
                    {
                        while (s.top()._value != OP_ADD && s.top()._value != OP_SUB && s.top()._value != OP_LBAC && !s.empty())
                        {
                            tmp.push_back(s.top());
                            s.pop();
                        }
                        s.push(expc[i]);
                    }
                    //左括号直接入栈
                    else if (expc[i]._value == OP_LBAC)
                    {
                        s.push(expc[i]);
                    }
                    //如果遇到一个右括号,则将栈元素弹出,将弹出的操作符输出直到遇到左括号为止。注意,左括号只弹出并不入tmp。
                    else if (expc[i]._value == OP_RBAC)
                    {
                        while (s.top()._value != OP_LBAC && !s.empty())
                        {
                            tmp.push_back(s.top());
                            s.pop();
                        }
                        //左括号不入
                        s.pop();
                    }
                    else
                        assert(false);
                }
                else
                {
                    //符号栈为空,直接入符号
                    s.push(expc[i]);
                }
            }
            else
                assert(false);
        }


        //如果我们读到了输入的末尾,则将栈中所有元素依次弹出。* /
        while (!s.empty())
        {
            tmp.push_back(s.top());
            s.pop();
        }

        //将转为后缀的表达式拷贝回expc
        for (size_t i = 0; i < tmp.size(); i++)
        {
            expc[i] = tmp[i];
        }
        expc.resize(tmp.size());
    }

    int count()
    {
        stack<int> s; //计算时存放数据的栈
        for (size_t i = 0; i < _rpn.size();i++)
        {
            if (_rpn[i]._type == OP_NUM)
            {
                s.push(_rpn[i]._value);
            }
            else if (_rpn[i]._type == OP_SYMBOL)
            {
                int right = s.top();
                s.pop();
                int left = s.top();
                s.pop();

                switch (_rpn[i]._value)
                {
                case OP_ADD:
                    s.push(left + right);
                    break;
                case OP_SUB:
                    s.push(left - right);
                    break;
                case OP_MUL:
                    s.push(left * right);
                    break;
                case OP_DIV:
                    s.push(left / right);
                    break;
                default:
                    assert(false);
                    break;
                }
            }
            else
                assert(false);
        }
        return s.top();
    }
private:
    vector<Cell> _rpn;  //存后缀表达式
};

如发现问题请及时联系我谢谢~
展开阅读全文

没有更多推荐了,返回首页