基于沙猫群优化算法(SCSO)优化CNN-BiGUR-Attention风电功率预测研究(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、相关技术介绍

三、研究内容与方法

四、研究结果与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于沙猫群优化算法(SCSO)优化CNN-BiGRU-Attention风电功率预测的研究是一个结合了多种先进技术的综合性研究,旨在提高风电功率预测的准确性和效率。以下是对该研究的详细分析:

一、研究背景与意义

随着全球能源结构转型和可再生能源的快速发展,风能作为清洁、可再生的能源,在全球能源供应体系中占据越来越重要的地位。然而,风能具有随机性、间歇性等特点,导致风电功率预测成为风电并网运行的关键技术。准确的风电功率预测对于提高电力系统运行效率和稳定性至关重要。

二、相关技术介绍

  1. 沙猫群优化算法(SCSO)
    • 原理:SCSO算法是一种基于生物启发式算法的优化算法,灵感来源于沙漠中生存的沙猫。该算法通过模拟沙猫的捕猎行为和群体协作机制,实现对复杂优化问题的求解。SCSO算法具有较强的全局搜索能力和局部搜索能力,能够有效避免陷入局部最优解,从而找到更优的解。
    • 应用:在风电功率预测中,SCSO算法可以用于优化模型参数或特征选择过程,提升预测模型的整体性能。
  2. 卷积神经网络(CNN)
    • 特点:CNN是一种深度学习模型,特别擅长处理图像数据,同时也适用于时序数据如风电功率预测。它能够自动从输入序列中提取出有用的特征,并通过一系列卷积层、池化层和全连接层进行模式识别和预测。
    • 作用:在风电功率预测中,CNN可以帮助捕捉风电时间序列中的短周期波动规律。
  3. 双向门控循环单元(BiGRU)
    • 原理:BiGRU是RNN的一种变体,它通过引入双向传播机制,能够同时捕捉时间序列数据中的前向和后向依赖关系。与LSTM相比,BiGRU在保持较长序列依赖性的同时,具有更低的计算复杂度。
    • 应用:在风电功率预测中,BiGRU能够更好地考虑到历史数据对未来预测的影响,提高预测的准确性。
  4. 注意力机制(Attention)
    • 作用:注意力机制是一种增强模型对关键信息关注程度的技术。在风电功率预测中,注意力机制可以帮助模型自动聚焦于预测过程中最重要的一小部分输入(如特定时间段内的风向、温度等因素),从而提高预测精度。

三、研究内容与方法

  1. 数据预处理
    • 收集风电场的历史运行数据,包括风电功率、风速、温度等环境因素以及时间戳等。
    • 对数据进行清洗、标准化处理,确保数据质量。
  2. 特征抽取与选择
    • 利用SCSO优化算法自动筛选出最有助于预测的关键特征。
    • 通过CNN提取序列中的高阶特征。
  3. 模型构建
    • 设计包含SCSO优化层、CNN层、BiGRU层和注意力机制的集成模型。
    • SCSO负责调整整个模型的超参数;CNN提取时空特征;BiGRU捕捉序列依赖关系;注意力机制突出重要时段的影响。
  4. 训练与验证
    • 使用历史数据集训练模型,通过交叉验证确保模型泛化能力。
    • 监控训练过程中的损失函数和指标,调整模型结构或超参数以优化性能。
  5. 预测与结果评估
    • 将新收集的数据输入已训练好的模型,进行风电功率预测。
    • 使用MSE、MAE等指标评估预测准确度,并根据实际情况进行模型迭代优化。

四、研究结果与展望

  1. 研究结果
    • 通过实验验证,基于SCSO优化CNN-BiGRU-Attention的风电功率预测模型在多种风电场数据集上均取得了优于其他最新算法的预测精度。
    • 该模型能够有效地提取风电时间序列数据中的有用特征,并捕捉到历史数据对未来预测的影响,从而提高了预测的准确性。
  2. 未来展望
    • 探索更有效的深度学习模型结构,进一步提高风电功率预测精度。
    • 研究多源数据融合技术,例如结合气象数据、风机运行数据等,提升模型的预测能力。
    • 开发更加高效的优化算法,提高模型的训练效率。

综上所述,基于沙猫群优化算法(SCSO)优化CNN-BiGRU-Attention的风电功率预测研究是一项具有创新性和实用性的工作,能够为风电并网运行提供有力的技术支持。

📚2 运行结果

部分代码:

% 指标计算
disp('…………训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1);
fprintf('\n')

figure('Position',[200,300,600,200])
plot(T_train1);
hold on
plot(T_sim1)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION训练集预测效果对比')
xlabel('样本点')
ylabel('发电功率')

disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test2,T_sim2);
fprintf('\n')


figure('Position',[200,300,600,200])
plot(T_test2);
hold on
plot(T_sim2)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION预测集预测效果对比')
xlabel('样本点')
ylabel('发电功率')

figure('Position',[200,300,600,200])
plot(T_sim2-T_test2)
title('CNN-BiGRU-ATTENTION误差曲线图')
xlabel('样本点')
ylabel('发电功率')

%% 优化CNN-BiGRU-Attention

disp(' ')
disp('优化CNN_BiLSTM_attention神经网络:')

%% 初始化参数 
popsize=10;   %初始种群规模 
maxgen=8;   %最大进化代数
fobj = @(x)objectiveFunction(x,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
% 优化参数设置
lb = [0.001 10 2  2]; %参数的下限。分别是学习率,biGRU的神经元个数,注意力机制的键值, 卷积核大小
ub = [0.01 50 50 10];    %参数的上限
dim = length(lb);%数量

% 可选:'DBO','GWO','OOA','PSO','SABO','SCSO','SSA','BWO','RIME','WOA','HHO','NGO';

[Best_score,Best_pos,curve]=NGO(popsize,maxgen,lb,ub,dim,fobj); %修改这里的函数名字即可
setdemorandstream(pi);

%% 绘制进化曲线 
figure
plot(curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')

%% 把最佳参数Best_pos回带
[~,optimize_T_sim] = objectiveFunction(Best_pos,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
setdemorandstream(pi);

%% 比较算法预测值 
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
figure('Units', 'pixels', ...
    'Position', [300 300 860 370]);
plot(T_test,'-','Color',[0.8500 0.3250 0.0980]) 
hold on
plot(T_sim2,'-.','Color',[0.4940 0.1840 0.5560]) 
hold on
plot(optimize_T_sim,'-','Color',[0.4660 0.6740 0.1880])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off


%% 比较算法误差
test_y = T_test;
Test_all = [];

y_test_predict = T_sim2;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];


y_test_predict = optimize_T_sim;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
     

str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)

%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color=    [0.66669    0.1206    0.108
    0.1339    0.7882    0.8588
    0.1525    0.6645    0.1290
    0.8549    0.9373    0.8275   
    0.1551    0.2176    0.8627
    0.7843    0.1412    0.1373
    0.2000    0.9213    0.8176
      0.5569    0.8118    0.7882
       1.0000    0.5333    0.5176];
figure('Units', 'pixels', ...
    'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on

for i = 1 : size(plot_data_t,2)
    x_data(:, i) = b(i).XEndPoints'; 
end

for i =1:size(plot_data_t,2)
    b(i).FaceColor = color(i,:);
    b(i).EdgeColor=[0.3353    0.3314    0.6431];
    b(i).LineWidth=1.2;
end

for i = 1 : size(plot_data_t,1)-1
    xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
    b1=xline(xilnk,'--','LineWidth',1.2);
    hold on
end 

ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.

[2]李卓,叶林,戴斌华,等.基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术, 2022(6):2117-2127.

[3]贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J].中国电力, 2022, 55(5):47-56.DOI:10.11930/j.issn.1004-9649.202104023.

[4]李艳、彭春华、傅裕、孙惠娟.基于CNN-LSTM网络模型的风电功率短期预测研究[J].华东交通大学学报, 2020, 37(4):7.DOI:CNKI:SUN:HDJT.0.2020-04-017.

[5]张子华,李琰,徐天奇,等.基于VMD-CNN-LSTM的短期风电功率预测研究[J].云南民族大学学报:自然科学版, 2023.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值