💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于ELM-Adaboost的风电功率预测研究是一个结合了极限学习机(ELM)和自适应推进算法(Adaboost)的预测方法,旨在提高风电功率预测的准确性和稳定性。以下是对该研究的详细分析:
一、研究背景与意义
风电作为一种清洁可再生能源,在全球能源结构中扮演着越来越重要的角色。然而,风电功率具有间歇性和波动性,准确预测风电功率对于电网的稳定运行和优化调度至关重要。传统的风电功率预测方法主要基于统计学或物理学模型,但这些方法往往无法充分捕捉风电功率序列的复杂非线性特征。因此,引入机器学习技术,特别是深度学习模型和集成学习算法,成为提高风电功率预测精度的有效途径。
二、ELM-Adaboost算法概述
- 极限学习机(ELM):
- 极限学习机是一种单层前馈神经网络,其特点在于随机初始化输入层与隐藏层之间的连接权重,并通过解析解的方式快速计算输出层的权重。
- 相比于传统的神经网络算法,ELM具有训练速度快、泛化能力强等优点,适用于处理大规模数据集和高维特征。
- 自适应推进算法(Adaboost):
- Adaboost是一种集成学习算法,通过串行训练多个弱分类器(或弱预测器),并根据它们的性能动态调整样本权重,最终组合成一个强分类器(或强预测器)。
- 在Adaboost中,每个弱分类器都会关注前一轮分类(或预测)错误的样本,通过不断迭代提高整体分类(或预测)的准确性。
三、ELM-Adaboost在风电功率预测中的应用
- 模型构建:
- 将ELM作为基学习器,利用Adaboost算法串行训练多个ELM模型。
- 在每一轮训练中,根据上一轮ELM模型的预测结果调整样本权重,使得后续ELM模型更加关注预测错误的样本。
- 特征选择与处理:
- 选择风电功率历史序列、气象数据(如风速、风向、温度等)作为输入特征。
- 对输入特征进行归一化处理,以提高模型的收敛速度和预测精度。
- 模型训练与评估:
- 使用均方误差(MSE)等损失函数评估模型的预测性能。
- 通过反向传播算法更新ELM模型的权重,以最小化损失函数。
- 最终,将多个ELM模型的预测结果通过加权投票等方式组合起来,得到最终的预测结果。
四、研究优势与挑战
优势:
- 提高预测精度:ELM-Adaboost算法能够充分利用ELM的快速训练能力和Adaboost的集成学习优势,提高风电功率预测的精度。
- 增强鲁棒性:通过集成多个弱预测器,ELM-Adaboost算法能够降低单一预测器对异常值的敏感度,增强模型的鲁棒性。
挑战:
- 计算复杂度:随着弱预测器数量的增加,ELM-Adaboost算法的计算复杂度也会相应提高。
- 参数调优:ELM和Adaboost算法中涉及多个参数(如隐藏层神经元数量、迭代次数等),需要仔细调优以获得最佳性能。
五、结论与展望
基于ELM-Adaboost的风电功率预测研究展示了集成学习算法在风电功率预测领域的潜力。未来,可以进一步探索其他机器学习算法与Adaboost的结合方式,以及优化算法参数和特征选择方法,以进一步提高风电功率预测的准确性和稳定性。同时,随着风电技术的不断发展和数据量的不断增加,基于大数据和深度学习的风电功率预测方法也将成为未来的研究热点。
📚2 运行结果
部分代码:
%% 强预测器预测
at=at/sum(at);
%% 强学习器学习预测结果 %%
T_sim2=at*test_simu; %对测试集进行预测
%% 保存结果 %%
ELM_Adaboost_TSIM1 = T_sim1;
ELM_Adaboost_TSIM2 = T_sim2;
save ELM_Adaboost ELM_Adaboost_TSIM1 ELM_Adaboost_TSIM2
save true T_test
%% 计算各项误差参数 %%
% 指标计算
disp('…………ELM-Adaboost训练集误差指标…………')
[test_MAE1,test_MAPE1,test_MSE1,test_RMSE1,test_R2_1,test_RPD1] = calc_error(T_train,T_sim1);
fprintf('\n')
disp('…………ELM-Adaboost测试集误差指标…………')
[test_MAE2,test_MAPE2,test_MSE2,test_RMSE2,test_R2_2,test_RPD2] = calc_error(T_test,T_sim2);
fprintf('\n')
%% 训练集绘图 %%
figure('Position',[200,300,1100,300])
plot(1:N,T_test,'r-*','LineWidth',0.1,'MarkerSize',2)
hold on
plot(1:N,T_sim2,'b-o','LineWidth',0.1,'MarkerSize',3)
legend('真实值','ELM-Adaboost预测值')
xlabel('预测样本')
ylabel('预测结果')
string={'训练集预测结果对比';['(R^2 =' num2str(test_R2_1) ' RMSE= ' num2str(test_RMSE1) ' MSE= ' num2str(test_MSE1) ')'];[ '(MAE= ' num2str(test_MAE1) ' MAPE= ' num2str(test_MAPE1) ' RPD= ' num2str(test_RPD1) ')' ]};
title(string)
% 训练集回归拟合图和误差直方图
figure;
plotregression(T_train,T_sim1,['训练集回归图']);
figure;
ploterrhist(T_train-T_sim1,['训练集误差直方图']);
%% 测试集绘图
figure('Position',[200,300,1100,300])
plot(1:M,T_train,'r-*','LineWidth',0.1,'MarkerSize',2)
hold on
plot(1:M,T_sim1,'b-o','LineWidth',0.1,'MarkerSize',3)
legend('真实值','ELM-Adaboost预测值')
xlabel('预测样本')
ylabel('预测结果')
string={'测试集预测结果对比';['(R^2 =' num2str(test_R2_2) ' RMSE= ' num2str(test_RMSE2) ' MSE= ' num2str(test_MSE2) ')'];[ '(MAE= ' num2str(test_MAE2) ' MAPE= ' num2str(test_MAPE2) ' RPD= ' num2str(test_RPD2) ')' ]};
title(string)
figure;
plotregression(T_test,T_sim2,['测试集回归图']);
figure;
ploterrhist(T_test-T_sim2,['测试集误差直方图']);
%测试集误差图 %%
figure('Position',[200,300,1100,300]) %%
plot(T_test-T_sim2,'b-*','LineWidth',0.1,'MarkerSize',2)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('ELM-Adaboost预测输出误差')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]叶家豪,魏霞,黄德启,等.基于灰色关联分析的BSO-ELM-AdaBoost风电功率短期预测[J].太阳能学报, 2022(003):043.DOI:10.19912/j.0254-0096.tynxb.2020-0524.
[2]徐西蒙,杨任农,符颖,等.基于ELM_AdaBoost强预测器的空战目标威胁评估[J].系统工程与电子技术, 2018, 40(8):9.DOI:10.3969/j.issn.1001-506X.2018.08.14.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取