自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

前程算法屋的博客

前程算法屋的博客

  • 博客(2290)
  • 资源 (11)
  • 收藏
  • 关注

原创 吃瓜吃瓜,福建大瓜,福建几个人抄袭我,被我发现后曝光,现在又出幺蛾子了

吃瓜吃瓜,福建大瓜,福建几个人抄袭我,被我发现后曝光,现在又出幺蛾子了

2023-12-31 21:02:16 2009 1

原创 曝光关于福建团队抄袭的几个账号

曝光关于福建团队抄袭的几个账号

2023-12-23 13:20:29 480

原创 本人郑重声明,本人账号与其他账号没有任何关系,无其他合作账号。其他账号打着本账号名义行事与本账号无任何关联,本人概不负责。

本人郑重声明,本人账号与其他账号没有任何关系,无其他合作账号。其他账号打着本账号名义行事与本账号无任何关联,本人概不负责。

2023-12-13 13:27:40 542

原创 完整代码、论文复现及科研仿真事宜

完整代码、论文复现及科研仿真事宜(主做机器学习、深度学习等方向程序设计,类型有(回归预测、分类预测、时序预测、区间预测))

2023-10-31 10:02:35 465

原创 2025年APMCM亚太杯数学建模C题(美国关税政策对全球贸易和区域经济的影响)

2025年APMCM亚太杯数学建模C题(美国关税政策对全球贸易和区域经济的影响)

2025-11-22 11:22:23 283

原创 2025年APMCM亚太杯数学建模B题(辐射冷却技术建模与优化)

2025年APMCM亚太杯数学建模B题(辐射冷却技术建模与优化)

2025-11-22 11:16:08 111

原创 2025年APMCM亚太杯数学建模A题(机器人性能优化)代码和思路

2025年APMCM亚太杯数学建模A题(机器人性能优化)代码和思路

2025-11-22 11:10:25 49

原创 基于动态时间规整(DTW)与卷积长短期记忆网络(CNN-LSTM)相结合的锂电池剩余寿命(RUL)预测项目实例。通过MATLAB实现

基于动态时间规整(DTW)与卷积长短期记忆网络(CNN-LSTM)相结合的锂电池剩余寿命(RUL)预测项目实例。通过MATLAB实现

2025-11-16 10:29:46 33

原创 MATLAB + CNN‑LSTM完整的锂电池剩余寿命(RUL)预测

MATLAB + CNN‑LSTM完整的锂电池剩余寿命(RUL)预测

2025-11-16 10:25:37 365

原创 MATLAB 环境下实现SSA‑Transformer + SHAP可解释性分类预测

MATLAB 环境下实现SSA‑Transformer + SHAP可解释性分类预测

2025-11-16 10:22:26 845

原创 福利福利!Matlab基于NRBO-Transformer-BiGRU+SHAP可解释性分析的分类预测

福利福利!Matlab基于NRBO-Transformer-BiGRU+SHAP可解释性分析的分类预测

2025-11-16 10:20:31 799

原创 粉丝福利!Matlab + NRBO‑Transformer‑GRU + SHAP 分类预测

粉丝福利!Matlab + NRBO‑Transformer‑GRU + SHAP分类预测

2025-11-16 10:17:55 633

原创 VMD-NRBO-Transformer-LSTM-LSSVM的多变量时序预测MATLAB

VMD-NRBO-Transformer-LSTM-LSSVM的多变量时序预测MATLAB

2025-11-08 13:03:55 444

原创 基于VMD-NRBO-Transformer-BiLSTM-LSSVM的多变量时序预测MATLAB

基于VMD-NRBO-Transformer-BiLSTM-LSSVM的多变量时序预测MATLAB

2025-11-08 13:00:10 634

原创 VMD‑NRBO‑Transformer‑GRU‑LSSVM 的多变量时序预测实现思路MATLAB

VMD‑NRBO‑Transformer‑GRU‑LSSVM 的多变量时序预测实现思路MATLAB

2025-11-08 12:56:31 716

原创 基于 VMD‑NRBO‑Transformer‑BiGRU‑LSSVM 的多变量时序预测完整实现(MATLAB)

基于 VMD‑NRBO‑Transformer‑BiGRU‑LSSVM 的多变量时序预测完整实现(MATLAB)

2025-11-08 12:53:32 1017

原创 TCN‑Transformer‑BiGRU 混合模型在 MATLAB 中实现多变量时序预测的完整流程

TCN‑Transformer‑BiGRU 混合模型在 MATLAB 中实现多变量时序预测的完整流程

2025-11-08 12:46:39 776

原创 TCN‑Transformer‑GRU 混合模型在 MATLAB 中实现多变量时序预测的完整步骤

TCN‑Transformer‑GRU 混合模型在 MATLAB 中实现多变量时序预测的完整步骤

2025-11-08 12:43:46 328

原创 CNN-LSTM轴承寿命预测模型的基本步骤

CNN-LSTM轴承寿命预测模型的基本步骤

2025-10-29 09:43:40 220

原创 基于多目标粒子群优化(MOPSO)的电力负荷预测MATLAB实现。这个方案结合了MOPSO的多目标优化能力和神经网络预测模型。

基于多目标粒子群优化(MOPSO)的电力负荷预测MATLAB实现。这个方案结合了MOPSO的多目标优化能力和神经网络预测模型。

2025-10-26 12:31:18 140

原创 基于ARIMA-RBF混合模型的降雨量预测Python实现。这个模型结合了ARIMA的时间序列分析能力和RBF神经网络的非线性拟合能力

完整的基于ARIMA-RBF混合模型的降雨量预测Python实现。这个模型结合了ARIMA的时间序列分析能力和RBF神经网络的非线性拟合能力

2025-10-26 12:24:45 208

原创 基于EdgeGRU-Transformer模型进行多变量时间序列预测MATLAB实现

基于EdgeGRU-Transformer模型进行多变量时间序列预测MATLAB实现

2025-10-23 18:25:57 234

原创 MATLAB云模型在商品月销售量预测中的应用

商品月销售量预测对企业制定科学合理的生产计划、库存管理策略以及营销策略具有至关重要的意义。云模型作为一种处理不确定性的有效工具,能够很好地应用于商品月销售量预测。其应用方法主要包括数据收集与预处理、构建基于云模型的预测模型以及预测结果输出等步骤。相较于传统的时间序列分析和回归分析等预测方法,云模型在处理数据的不确定性和模糊性方面具有显著优越性,能够实现更精准的预测。

2025-10-18 12:19:30 177

原创 Python电池寿命预测 | 基于随机森林的锂电池寿命预测

Python电池寿命预测 | 基于随机森林的锂电池寿命预测

2025-10-18 12:05:42 30

原创 PyTorch基于CEEMDAN-CNN-LSTM混合模型的时间序列预测

PyTorch基于CEEMDAN-CNN-LSTM混合模型的时间序列预测

2025-10-12 21:46:52 34

原创 MATLAB实现基于PSO-RF-LSTM的股票价格预测

MATLAB实现基于PSO-RF-LSTM的股票价格预测

2025-10-12 21:35:59 801

原创 Python实现基于IWO-Kmeans:侵入性杂草优化K均值聚类的多变量时间序列预测项目实例

Python实现基于IWO-Kmeans:侵入性杂草优化K均值聚类的多变量时间序列预测项目实例

2025-10-12 21:29:19 37

原创 2025年华为杯D题:低空湍流监测及最优航路规划思路与Matlab实现

2025年华为杯D题:低空湍流监测及最优航路规划思路与Matlab实现

2025-09-21 11:28:24 663

原创 【2025年华为杯A题】通用神经网络处理器下的核内调度问题 思路、Matlab代码

【2025年华为杯A题】通用神经网络处理器下的核内调度问题 思路、Matlab代码

2025-09-21 11:06:00 156

原创 基于ADGO-SVM的数据多输入单输出回归(多输入单输出) Matlab代码

基于ADGO-SVM的数据多输入单输出回归(多输入单输出) Matlab代码

2025-09-19 22:07:02 229

原创 BiTCN-LSTM 多变量时间序列预测 MATLAB 实现

BiTCN-LSTM 多变量时间序列预测 MATLAB 实现

2025-09-19 21:57:36 39

原创 MATLAB基于PSO优化ANFIS的预测

MATLAB基于PSO优化ANFIS的预测

2025-09-14 23:52:47 818

原创 MATLAB基于Kmeans聚类和多变量状态估计技术(MSET)

MATLAB基于Kmeans聚类和多变量状态估计技术(MSET)

2025-09-14 23:44:06 883

原创 MATLAB 基于特征提取和KPCA-PLO-Transformer-LSTM的锂电池SOH估算(以NASA数据集为例)

MATLAB 基于特征提取和KPCA-PLO-Transformer-LSTM的锂电池SOH估算(以NASA数据集为例)

2025-09-05 11:56:42 692

原创 基于灰狼优化器GWO与小龙虾优化算法COA的无人机航迹规划

基于灰狼优化器GWO与小龙虾优化算法COA的无人机航迹规划

2025-09-05 11:49:42 1203

原创 MATLAB 基于 Transformer-LSTM-LSSVM 的多特征分类预测

MATLAB 基于 Transformer-LSTM-LSSVM 的多特征分类预测

2025-08-31 16:30:54 336

原创 混沌粒子群算法自动拟合理论变差函数的问题

混沌粒子群算法自动拟合理论变差函数的问题

2025-08-31 16:09:27 428

原创 海星优化算法SFOA-CNN-LSTM-Attention 6 模型多变量时序预测一键对比附Matlab代码

海星优化算法SFOA-CNN-LSTM-Attention 6 模型多变量时序预测一键对比附Matlab代码

2025-08-24 15:01:41 698

原创 基于海星优化算法优化XGBoost(SFOA-XGBoost)的数据多特征分类预测 (多输入单输出)附Matlab代码

基于海星优化算法优化XGBoost(SFOA-XGBoost)的数据多特征分类预测 (多输入单输出)附Matlab代码

2025-08-24 14:57:03 215

原创 改进的VMD-WT微震信号联合去噪方法

改进的VMD-WT微震信号联合去噪方法是一种结合变分模态分解(VMD)与小波变换(WT)的信号处理技术,旨在提高微震信号的去噪效果。该方法通过VMD对微震信号进行模态分解,提取不同频率成分的子信号,随后采用小波变换对每个子信号进行去噪处理,以去除噪声干扰。该方法在保留信号主要特征的同时,有效抑制了噪声,提高了信号的清晰度和可用性。该方法在多个研究中被提及并进一步优化。例如,有研究提出了一种改进的VMD-WT联合去噪方法,用于岩体破裂灾害的微震信号早期预警,通过GSWOA算法优化VMD分解参数和WT阈值函

2025-08-24 14:54:23 241

基于NGO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于NGO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 北方苍蝇算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于FA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于FA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 萤火虫算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于BES-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于BES-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 秃鹰算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于GRO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于GRO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 淘金算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于SABO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于SABO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 减法平均算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于RIME-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于RIME-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 霜冰算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于PSA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于PSA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) PID搜索算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于POA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于POA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 鹈鹕算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于OOA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于OOA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 鱼鹰算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于OMA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于OMA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 光学显微镜算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于MFO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于MFO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 飞蛾扑火算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于INFO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于INFO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 向量加权算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于GWO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于GWO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 灰狼算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于GWCA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于GWCA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 长城建造算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于GOA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于GOA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 高尔夫算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于GMO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于GMO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 几何平均优化器优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于GA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于GA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 遗传算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于GJO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于GJO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 金豹算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于DBO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于DBO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 蜣螂算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于CPO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于CPO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 冠豪猪算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

CNN‑LSTM轴承剩余使用寿命(RUL)预测python代码

CNN‑LSTM 通过 卷积层捕获局部时域/频域特征 与 LSTM 捕获长期时序演化 的优势互补,已在轴承剩余使用寿命(RUL)预测中实现 显著的精度提。近年来的研究进一步加入 迁移学习、对抗判别、注意力机制和多模态融合,使模型在复杂工况下仍保持鲁棒。结合上述实现要点与公开代码,工程师可以快速搭建、训练并部署符合实际需求的轴承寿命预测系统。

2025-10-29

Pytorch代码,EMD-LSTM-Attention时间序列风速气候预测(完整源码和数据)

Pytorch代码,EMD-LSTM-Attention时间序列风速气候预测(完整源码和数据)

2025-07-27

Pytorch代码,EMD-Transformer时间序列风速气候预测(完整源码和数据)

Pytorch代码,EMD-Transformer时间序列风速气候预测(完整源码和数据)时间序列预测是指基于历史数据对未来趋势进行预测的过程,这在气候科学、经济学、金融等众多领域有着重要的应用价值。风速作为气候预测中的关键指标之一,对其变化趋势的准确预测对于风能发电、农业生产、航空运输等行业至关重要。

2025-07-27

Pytorch代码,LSTM时间序列风速气候预测(完整源码和数据)

Pytorch代码,LSTM时间序列风速气候预测(完整源码和数据)

2025-07-13

Pytorch代码,EMD-LSTM时间序列风速气候预测(完整源码和数据)

Pytorch代码,EMD-LSTM时间序列风速气候预测(完整源码和数据)

2025-07-13

Pytorch代码,EMD-CNN-LSTM时间序列风速气候预测(完整源码和数据)

Pytorch代码,EMD-CNN-LSTM时间序列风速气候预测(完整源码和数据)

2025-07-13

Pytorch代码,EMD-CNN-GRU时间序列风速气候预测(完整源码和数据)

Pytorch代码,EMD-CNN-GRU并行模型(单变量)时间序列风速气候预测(完整源码和数据)

2025-07-06

Pytorch代码,CEEMDAN-LSTM-Attention多特征时间序列风速气候预测(完整源码和数据)

Pytorch代码,CEEMDAN-LSTM-Attention多特征时间序列风速气候预测(完整源码和数据)

2025-07-06

Pytorch代码,Transformer-BILSTM多特征时间序列风速气候预测(完整源码和数据)

Pytorch代码,Transformer-BILSTM多特征时间序列风速气候预测(完整源码和数据)

2025-07-06

Pytorch代码,Transformer多特征时间序列风速气候预测(完整源码和数据)

Pytorch代码,Transformer多特征时间序列风速气候预测(完整源码和数据)

2025-06-08

Pytorch代码,LSTM多特征时间序列风速气候预测(完整源码和数据)

Pytorch代码,LSTM多特征时间序列风速气候预测(完整源码和数据)

2025-06-07

Pytorch代码,CNN-LSTM时间序列风速气候预测(完整源码和数据)

Pytorch代码,CNN-LSTM时间序列风速气候预测(完整源码和数据) CNN-LSTM模型通过融合空间特征提取与时间序列建模,在风速气候预测中展现出显著优势,尤其在处理多变量、非平稳数据时表现突出。

2025-05-25

基于matlab灰狼算法优化长短时记忆网络GWO-LSTM锂电池容量预测

基于matlab灰狼算法优化长短时记忆网络GWO-LSTM锂电池容量预测

2025-05-10

基于粒子群算法-概率神经网络 PSO-PNN多变量分类预测 (多输入单输出)(MATLAB完整源码和数据)

基于粒子群算法-概率神经网络 PSO-PNN多变量分类预测 (多输入单输出)(MATLAB完整源码和数据) 使用粒子群优化算法(PSO)改进的概率神经网络(PNN)进行多变量分类预测的MATLAB代码实现。程序具备多输入单输出功能,适用于多种分类任务,并附带清晰的中文注释。示例结果图像展示了算法的效果。

2024-12-04

基于WOA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于WOA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 鲸鱼算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于TTAO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于TTAO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 三角拓扑聚合优化器优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于SSA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于SSA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 麻雀算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于SO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于SO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 蛇群算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于SMA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于SMA-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 黏菌算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

基于SAO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据)

基于SAO-Transformer-BiLSTM多变量回归预测(MATLAB完整源码和数据) 雪消融算法优化Transformer结合BiLSTM双向长短期记忆神经网络多变量回归预测 1.MATLAB完整源码和数据,保证原始程序运行, 纯手工制作,代码质量极高,注释清晰,excel数据,方便替换 2.优化参数为:学习率,BiLSTM隐含层节点,正则化参数 3.运行环境为Matlab2023b及以上; 4.data为数据集,输入多个特征,输出单个变量, 5.所有文件放在一个文件夹,main.m为主程序,运行即可; 6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价:

2024-12-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除