💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要:
可重构智能表面(RIS)代表了一种新技术,能够塑造无线网络中射频波的传播,并提供各种可能的性能和实施增益。基于此,我们研究了装备RIS的多流多输入多输出(MIMO)系统的可实现速率优化,并制定了一个联合优化问题,涉及到发射信号的协方差矩阵和RIS元素。为了解决这个问题,我们提出了一种基于投影梯度法(PGM)的迭代优化算法。我们推导出了保证所提算法收敛性的步长,并定义了一种回溯线搜索方法,以提高其收敛速度。此外,我们引入了间接链路和直接链路的总自由空间路径损耗(FSPL)比率,作为评估RIS在所考虑通信系统中适用性的初步衡量标准。仿真结果表明,所提PGM达到了与最新基准方案相同的可实现速率,但计算复杂度显著降低。此外,我们展示了RIS在室内环境中应用的特别适用性,因为即使少量的RIS元素也能提供可观的可实现速率增益。
结论:
在本文中,我们提出了一种新的渐进式梯度法(PGM)算法,用于优化配备可重构智能表面(RIS)的多流MIMO系统中的可达速率。同时,我们推导出了一种利普希茨常数,以确保PGM的收敛性。为了提高PGM算法的收敛速度,我们引入了数据缩放步骤,并采用了回溯线搜索技术,使得PGM在性能上显著优于现有的自适应优化(AO)算法。此外,我们定义了一个新的度量标准——总自由空间损耗(FSPL),并显示了间接链路和直接链路的总FSPL之比可以有效地作为评估RIS适用性的一级指标。数值结果证实,PGM算法所需的迭代次数显著低于AO算法,从而对应地大幅降低了计算复杂度,以便达到一个目标(近优)可达速率。此外,我们还展示了RIS在室内环境中的应用特别方便,因为只需较少数量的RIS单元,就能使间接链路的可达速率高于直接链路。
📚2 运行结果
部分代码:
Nt = 8; % Number of TX antennas
Nr = 4; % Number of RX antennas
Nris = 15^2; % Number of RIS elements
K = 1; % Rician factor
D = 500; % TX-RX distance
dist_ris = 40; % RIS distance from TX
f = 2e9; % Frequency
lt = 20; % TX position
lr = 100; % RX position
Pt = 1; % Transmit power in Watts
N0 = -120; % Noise power in dB
SNR = db2pow(-N0); % SNR
no_mat = 10; % Number of channel realizations
no_iter = 500; % Number of iterations
alpha_dir = 3; % FSPL exponent of the direct link
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
🌈4 Matlab代码、文献下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取