数学中,同号相乘一定为正吗?

在数学中,有一个基本问题一直没有弄清楚,这就是同号为正,异号为负的乘法规则,这个规则中学老师只是把它作为一个圣旨教授给学生,但却没有一个严格的证明。进入大学之后我们不难发现,这个规则已经成了近代数学的一个基石,在他的基础上建立起了非常严格的复变函数论,现在这一理论已经深入每一门科学中,求解量子力学严格解,求电磁方程解都离不开。那么,这个规则能否得到严格的论证,这是我们将要谈到的问题。

         在《什么是数学》这本书中说到:对数学家来说,经过了很长一断时间才认识到这个是不能加以证明的。甚至欧拉曾给出一个不是很严格的论证:

 

                   (-1)*(-1) 必须等于=+1

怎么证明呢?

假设它不等于+1,那么它一定等于-1

这样:

                   (-1)*(-1) =-1

 

把两边的(-1)约掉

                (-1)=1

结果明显有很矛盾,所以

                   (-1)*(-1) =+1

 

这个证明毛病很多,比如你不能用-1就代表了所有的负数;第二,等式两边同除负数,等号还相等吗?这个也应该要得到证明。

 

我们尝试用另一个证明:

a,b 为正数,则-a,-b为负数:

 

(-a) * (-b) =(-a)*(0-b)=-a*0-(-a)*b=0-(-ab)=-(-ab)=ab

 

好像是可以,但仔细分析发现,这里用到了一些假设 -a = (0-a), -(-a)=a,这些假设未能得到证明,所以这种方式还是不完善。

 

第三种证明:

 

a1<b1,a2<b2,

a1-b1,a2-b2为负数:

 

(a1-b1)*(a2-b2)

=a1(a2-b2)-b1(a2-b2)

=a1a2+b1b2-(a1b2+b1a2)                       A

 

这时就要比较a1a2+b1b2的a1b2+b1a2 大小

 

a1a2<a1b2,但b1b2>b1a2,

再比较其差值的绝对值:

|a1a2-a1b2|=a1|(a2-b2)|

|b1b2-b1a2|=b1|(a2-b2)|

 

看出来了吧,   A等式的值是大于零,命题得证。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值