时间复杂度和空间复杂度

  1.算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间

2.时间复杂度

简单点来说就是算法中的基本操作的执行次数,为算法 的时间复杂度。

如果用下面这个题来说,我们的时间复杂度就是计算count的值

void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

举个例子,计算他的复杂度,O(N+10),进一步写的话就是O(N);

void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

再计算一下 O(M+N); 如果M远大于N,则可以写出O(M);N远大于M,写成O(N);

void Func4(int N)
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

这个k是常数,那就是O(1);

我们值得一提的是一个叫做卡瑞尔公式的,这个公式让我们计算时间复杂度的时候要通过最坏的结果进行计算,举个例子,就是二分查找,如果再坏的话,就是在最后两个数之间找到,这样来计算它的时间复杂度。

void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }

这个冒泡排序的时间复杂度也值得我们计算 我们 就当作是最坏的情况看 n ......9 8 7 6 5  4 3 2 1这样进行升序排列,我们第一次的循环是 n-1 第二次是n-2......最后一次是1 好了高中的等差数列=

n*(n-1)/2,这样的话,时间复杂度就是O(n^2);

int BinarySearch(int* a, int n, int x)
{
 assert(a);
 int begin = 0;
 int end = n-1;
 // [begin, end]:begin和end是左闭右闭区间,因此有=号
 while (begin <= end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid-1;
 else
 return mid;
 }
 return -1;
}

这个比较难算,这就是二分查找需要的次数,从最坏的情况来看,数组的长度是n;所以我们的时间复杂度就是log2  n(log以二为底n的对数);

long long Fac(size_t N)
{
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N;
}

这个是函数递归,每次函数调用,复杂度都是O(1),那么调用多少次都是O(1)。

long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

我们可以由图看出来,也是一个等差数列,所以我们计算一下就是O(2^n)

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中 临时占用存储空间大小的量度
函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
lai
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

让我们来计算一下这个的空间复杂度, 常数个额外空间,所以O(1);

long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

这是斐波那契数列,但是值得一提的是,空间可以重复利用,但是时间是累计增加。

我们用刚才的这个图来确定,离散数学中学的二叉树,我们就按照前序遍历,走到尽头,最多就是开辟了n个额外空间,能重复使用,所以,别的枝杈再用的时候,也是之前的空间,因为函数递归,遍历结束后就会往返这个,空间就会被回收利用。O(n);

long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

这个函数递归就区别刚才的时间复杂度,空间一直递归下去,一直需要创建,所以是O(n);

欢迎大佬指出错误,谢谢观看

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值