目录
列表推导式和生成器表达式:使用简洁的语法来生成列表和生成器。
上下文管理器:用于管理资源的对象,可以使用with语句来自动管理资源的分配和释放。
多线程和多进程编程:使用threading和multiprocessing模块来实现并发执行的程序。
使用try/except/else/finally实现异常处理:
Python高级代码是指使用更复杂和高级的技巧和功能来编写的Python代码。以下是一些常见的高级代码技巧和功能示例:
列表推导式和生成器表达式:使用简洁的语法来生成列表和生成器。
# 列表推导式
squares = [x**2 for x in range(10)]
# 生成器表达式
squares_generator = (x**2 for x in range(10))
装饰器:用于修改函数行为的函数。
def decorator(func):
def wrapper(*args, **kwargs):
print('Before function execution')
result = func(*args, **kwargs)
print('After function execution')
return result
return wrapper
@decorator
def my_function():
print('Function execution')
my_function()
上下文管理器:用于管理资源的对象,可以使用with语句来自动管理资源的分配和释放。
class MyContextManager:
def __enter__(self):
print('Enter context')
# 分配资源
return self.resource
def __exit__(self, exc_type, exc_value, traceback):
print('Exit context')
# 释放资源
with MyContextManager() as resource:
# 使用资源
多线程和多进程编程:使用threading和multiprocessing模块来实现并发执行的程序。
import threading
def my_thread_function():
print('Thread execution')
thread = threading.Thread(target=my_thread_function)
thread.start()
thread.join()
迭代器和生成器:用于逐个访问数据集合的对象。
class MyIterator:
def __init__(self, data):
self.data = data
self.index = 0
def __iter__(self):
return self
def __next__(self):
if self.index >= len(self.data):
raise StopIteration
value = self.data[self.index]
self.index += 1
return value
my_iterator = MyIterator([1, 2, 3])
for item in my_iterator:
print(item)
使用生成器实现斐波那契数列:
def fibonacci():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
fib = fibonacci()
for i in range(10):
print(next(fib))
使用列表推导式生成一个平方数列表:
squares = [x**2 for x in range(10)]
print(squares)
使用try/except/else/finally实现异常处理:
try:
# 尝试执行可能引发异常的代码
except ExceptionType1:
# 捕获异常类型1的处理代码
except ExceptionType2:
# 捕获异常类型2的处理代码
else:
# 当没有异常发生时执行的代码
finally:
# 无论是否发生异常都会执行的代码
使用字典推导式生成一个有序字典:
numbers = {'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5}
sorted_numbers = {key: numbers[key] for key in sorted(numbers)}
print(sorted_numbers)
这只是一些Python高级代码的示例,还有许多其他复杂和高级的功能和技巧可以在Python中使用。