多模态生物识别系统与地震后果的广义网模型
多模态生物识别系统的广义网模型
生物识别技术在当今社会的安全和身份验证领域发挥着至关重要的作用。多模态生物识别系统结合了多种生物特征识别技术,以提高识别的准确性和可靠性。这里主要介绍基于击键动力学和眼动追踪技术的多模态生物识别系统的广义网(GN)模型。
击键动力学与眼动追踪技术
- 击键动力学 :通过分析一个人在键盘上的打字方式来识别其身份,包括连续击键之间的延迟、按键按下和释放的停留时间、飞行时间(释放一个键到按下下一个键之间的时间)、整体打字速度、错误频率和控制键的使用等。常用的击键认证技术大多来自统计分析和人工智能领域,可用于身份验证、监控和安全等方面。
- 眼动追踪 :测量眼睛的注视点或相对于头部的运动。通过测量物体(镜片)的运动、非接触式光学追踪以及使用放置在眼睛周围的电极测量电位等方法来估计眼睛的旋转。眼动追踪技术在视觉系统、心理学、心理语言学、市场研究、人机交互、医学研究、驾驶员和飞行员的注意力分散检测以及为严重运动障碍者操作的计算机等领域有广泛应用,近年来在康复和辅助应用中的使用也不断增加,如控制轮椅、机械臂和假肢等。
广义网模型的构建
该广义网模型包含以下一组转换:
1. Z1 - 数据采集 :捕获击键动力学和眼动追踪数据。
2. Z2 - 击键动力学数据预处理 :对采集到的击键动力学数据进行预处理。
3. Z3 - 眼动追踪数据预处理
超级会员免费看
订阅专栏 解锁全文

2万+

被折叠的 条评论
为什么被折叠?



