1. 查找算法
1.1 顺序查找
1.1.1 简单顺序查找
public static int sequentialSearch(int[] nums,int key){
for(int i=0;i<nums.length;i++){
if(nums[i]==key){
return i;
}
}
return -1;
}
1.1.2 哨兵顺序查找
- 一种基于哨兵的顺序查找:
- 首先对比数组的最后一位是否于要进行查找的数字相等,如果相等则直接返回,否则,要查找的数字代替最后一位;
- 然后进行一位位查找,直到最后nums[i]==key;
- 最后进行对比返回。
- 这样的好处就是,不需要考虑会越界。
public static int sentrySequentialSearch(int[] nums,int key){
int index=nums.length-1;
if(nums[index]==key){
return index;
}
nums[index]=key;
int i=0;
while(nums[i++]!=key);
return i==index+1?-1:i-1;
}
1.2 二分查找
1.2.1 基础二分查找
- 二分查找也是一种比较常见的查找方式。不过查找前提是这个数组已经是有序排列了。这种方法的时间复杂程度为O(logN)
- 首先是将要查找的值与中间值进行比较,然后慢慢缩小,直至找到或者产生越界返回-1.
- 非递归实现
public static int BinarySearch(int[] nums,int key){
int left=0;
int right=nums.length-1;
while(left>=right){
int middle=left+((right-left)>>1);
if(key==nums[middle]){
return middle;
}else if(key>nums[middle]){
left=middle+1;
}else{
right=middle-1;
}
}
return -1;
}
public static int BinarySearchRecursion(int[] nums,int key){
return searchMy(nums,0,nums.length-1,key);
}
public static int searchMy(int[] nums,int left,int right,int key){
if(left>right)
return -1;
int middle=left+((right-left)>>1);
if(key==nums[middle]){
return middle;
}else if(key>nums[middle]){
return searchMy(nums,middle+1,right,key);
}else{
return searchMy(nums,left,middle-1,key);
}
}
1.2.2 差值二分查找
- 为了能更快的进行查找,在二分的基础上进行改进。根据差值的大小确定上下限。
- 非递归实现
public static int DifferenceSearch(int[] nums,int key){
int left=0;
int right=nums.length-1;
while(left>=right){
int middle=left+(key-nums[left])/(nums[right]-nums[left])*(right-left);
if(key==nums[middle]){
return middle;
}else if(key>nums[middle]){
left=middle+1;
}else{
right=middle-1;
}
}
return -1;
}
public static int DifferenceSearchRecursion(int[] nums,int key){
return searchMy(nums,0,nums.length-1,key);
}
public static int searchMy(int[] nums,int left,int right,int key){
if(left>right)
return -1;
int middle=left+(key-nums[left])/(nums[right]-nums[left])*(right-left);
if(key==nums[middle]){
return middle;
}else if(key>nums[middle]){
return searchMy(nums,middle+1,right,key);
}else{
return searchMy(nums,left,middle-1,key);
}
}
1.3 分块查找
- 分块查找是折半查找和顺序查找的一种改进方法,分块查找由于只要求索引表是有序的,对块内节点没有排序要求,因此特别适合于节点动态变化的情况。分块查找要求把一个数据分为若干块,每一块里面的元素可以是无序的,但是块与块之间的元素需要是有序的。即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……。
public static int BlockSearch(int[] index,int[] array,int key,int m){
int i=Search(index,key);
if(i<0){
return -1;
}
for(int j=i*m;j<(i+1)*m;j++){
if(array[j]==key)
return j;
}
return -1;
}
public static int Search(int[] nums,int key){
int left=0;
int right=nums.length-1;
if(key>nums[right]){
return -1;
}
while(left>=right){
int middle=left+((right-left)>>1);
if(key==nums[middle]){
return middle;
}else if(key>nums[middle]){
left=middle+1;
}else{
right=middle-1;
}
}
return left;
}