动态规划4:最大子段和问题到最大子矩阵问题(四):最大子矩阵面积问题

本文探讨如何使用动态规划解决寻找二维矩阵中最大子矩阵面积的问题。通过LeetCode上的Maximal Rectangle题目为例,阐述算法思路,包括利用一维数组优化计算过程,以提高效率。
摘要由CSDN通过智能技术生成

上文讲的是从二维矩阵(r*c),找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大

但是这个矩形的大小不一定是最大的,现在我们来找一个最大面积的子矩阵

转自:《浅谈用极大化思想解决最大子矩形问题》

问题1:来看LeetCode上的一道题:LeetCode OJ:Maximal Rectangle

题意是:给一个只有0和1元素的矩阵,从中找出一个最大的子矩阵,满足矩阵内只包含1

这显然不是求最大子矩阵和问题,是最大子矩阵面积问题

算法思想:

对于matrix[i][j]=1,找到上边离i最远且连续的位置H,左边最靠近j的最远1的位置L,并不是离j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值