潮汐观测数据调和分析及预报成图

本文介绍了基于长期观测资料的潮汐调和分析方法,使用8个主要分潮进行处理,包括M2、S2等。通过建立矛盾方程,应用最小二乘法求解法方程,计算调和常数,最终实现潮汐预报和绘图。案例代码主要在MATLAB环境中实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,需要说明两点。
第一,本案例使用的是单月潮汐观测数据,处理方法则是基于长期观测资料的调和分析来进行处理。中期观测资料的分析需要分别求主要分潮、随从分潮,短期观测资料分析则还需要计算不同观测序列的权重,但是核心算法与长期观测资料分析是一致的,都是建立矛盾方程,然后使用最小二乘法建立法方程,求出法方程系数,再求出矩阵X、Y。
第二,本文主要介绍方法步骤,所用代码大多为关键步骤实现,仅供参考。如需完整代码,请关注博主的另一篇资源。
下面开始介绍本案例的处理,从理论上讲,首先,我们需要选取分潮,确立我们所要分析的天文分潮,本案例用8个主要分潮——M2、S2、N2、K2、K1、O1、P1、Q1,四个半日潮,四个全日潮(其实去看潮汐相关研究的文献就会发现,基本都是以这八个分潮为主的)。相邻数据时间间隔为一小时,以所有数据的中间数对应时刻作为时间原点,然后对观测记录数据进行排序。
从实际出发,在matlab中,首先清理空间、准备环境(这是一个良好习惯),然后需要导入数据,对分潮进行排序。

%%导入数据
clear all;close all;clc;
data=importdata('C:\Users\STAR\Desktop\TideData_01.txt');

%%分潮排序(八个)
M2=1;
S2=2;
N2=3;
K2=4;
K1=5;
O1=6;
P1=7;
Q1=8;

常量的准备,输入杜德森数,以及天文元素随时间的变化速度

### 获取潮汐数据的API接口 对于获取潮汐数据的需求,存在特定设计用于提供此类信息的应用程序编程接口(API)[^2]。这类API通常具备详细的文档说明其工作原理以及如何调用它。 具体来说,有一个公开可用的潮汐监测站点API提供了关于潮汐的信息。此API允许用户通过发送HTTP请求至指定URL `http://www.maitanbang.com/apis/mtbchaoxizhan/` 来检索所需的数据。为了正确地向该API发起请求并接收响应,需遵循以下几点: - **请求方式**:支持GET与POST两种类型的HTTP请求。 - **必要参数**: - key: 用户身份验证所需的密钥; - type: 指定要查询的对象类型(例如,“潮汐”对应数值1,“潮流”则为2)。 当接收到服务器回应时,可以通过检查JSON格式返回值中的`code`字段来了解操作的结果。常见的状态码及其含义如下所示[^3]: | Code | 描述 | | --- | --- | | 200 | 请求成功执行 | | 400 | 存在错误的输入参数或者缺失必要的参数 | 此外,在构建应用程序的过程中如果希望简化API集成过程,则可以选择像卡拉云这样的低代码平台来进行开发。利用这些工具可以在无需深入了解前端技术的情况下迅速创建功能性的界面组件,并轻松实现与其他外部服务如上述提到的潮汐API之间的交互[^1]。 ```python import requests def fetch_tide_data(api_key, site_type=1): url = 'http://www.maitanbang.com/apis/mtbchaoxizhan/' params = { 'key': api_key, 'type': site_type } response = requests.get(url=url, params=params) if response.status_code == 200: result = response.json() return result['data'] else: raise Exception(f'Error fetching data from server: {response.text}') ```
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值