饥饿营销:为什么苹果在中国限量销售?

本文解析了饥饿营销的本质,通过苹果手机、AJ球鞋等案例,揭示了商家如何通过人为制造供不应求的现象来吸引消费者高价购买。并探讨了饥饿营销适用的产品特性及市场条件。
部署运行你感兴趣的模型镜像

为什么苹果在中国限量销售?为什么AJ球鞋限量发售?为什么刚建好的楼盘总是售罄?其实这些都是商家在进行饥饿营销。

什么是饥饿营销,究竟让谁饿了?

饥饿营销是只卖家故意降低产品数量,造成一种产品供不应求、数量有限的现象,并且还会提高价格,让消费者担心售完,而高价购买。

苹果就是擅长饥饿营销的企业之一,由于苹果手机的火爆,很多果粉都习惯于拥有最新款的苹果手机。但是苹果经常出现断货的情况,难道是真的因为苹果的供应不足吗?当然不是。苹果的一位经理曾经爆料,苹果一直在执行一项名为“可控泄露”的营销策略,即有计划、有目的地放出未发布新产品的信息。也就是指饥饿营销,只发布数量限制的产品,让消费者认为数量有限,给消费者一种暗示心理:如果我不买,就没了。这使得苹果在中国市场的份额正一步步加速。

还有就是在楼市旺季,有两种捂盘惜售方式制造饥饿营销:一是放慢销售速度,将整个销售周期拉长,一年内有好几次调价机会。二是当现有房子销售到一定程度后,开发商会停止销售,把一些相对好的房子留到下一期一起卖,以便卖个高价。有的开发商一次只开卖一栋楼,或者几十套房子,如果人数不够一次售罄就继续延期开盘,这样以来可以制造热销气氛,形成购房者饥饿,二来可以不断提价。

饥饿营销正是利用了消费者的好奇、攀比的心理,来吸引消费者的购买,因为人人都认为物以稀为贵,人人都想拥有自己拥有,但是别人没有的东西。最典型的要数钻石了,把钻石和爱联系了起来,而且钻石天然稀缺,完美地实现了继而营销。

当然饥饿营销也不是处处都适用,一件产品是否适合进行饥饿营销,需要从产品的不可替代性、市场竞争是否激烈两个方面来决定。

产品的不可替代性是指消费者只能在你这购买到产品,在其他地方购买不到,而且也没有可替代性产品,比如苹果手机是不可替代的,世界上只有一家苹果公司,果粉只想购买苹果手机。再比如馒头是可以替代的,你不能说今天我就只做 10 个馒头,顾客不去你这里买,也可以去别的地方买,而且顾客不吃馒头也可以吃面条。

市场是否竞争激烈,如果市场竞争激烈的话,顾客可能会去别的地方买,不在你这里买了,还是手机市场,如果一个用户认为手机用什么牌子的都好,不一定非要用苹果,那么就会买华为或者是其他的手机,而你如果搞饥饿营销,就会给了你的竞争对手机会,造成客户的流失。

不管是个人或者企业,如果能够巧妙利用饥饿营销,就能够吸引到消费者来为你买单。在你的生活中,有遇到哪些饥饿营销的例子呢?

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)内容概要:本文围绕使用MATLAB和XBee技术实现温度传感器无线网络的连续监控展开研究,介绍了如何构建无线传感网络系统,并利用MATLAB进行数据采集、处理与可视化分析。系统通过XBee模块实现传感器节点间的无线通信,实时传输温度数据至主机,MATLAB负责接收并处理数据,实现对环境温度的动态监测。文中详细阐述了硬件连接、通信协议配置、数据解析及软件编程实现过程,并提供了完整的MATLAB代码示例,便于读者复现和应用。该方案具有良好的扩展性和实用性,适用于远程环境监测场景。; 适合人群:具备一定MATLAB编程基础和无线通信基础知识的高校学生、科研人员及工程技术人员,尤其适合从事物联网、传感器网络相关项目开发的初学者与中级开发者。; 使用场景及目标:①实现基于XBee的无线温度传感网络搭建;②掌握MATLAB与无线模块的数据通信方法;③完成实时数据采集、处理与可视化;④为环境监测、工业测控等实际应用场景提供技术参考。; 阅读建议:建议读者结合文中提供的MATLAB代码与硬件连接图进行实践操作,先从简单的点对点通信入手,逐步扩展到多节点网络,同时可进一步探索数据滤波、异常检测、远程报警等功能的集成。
内容概要:本文系统讲解了边缘AI模型部署与优化的完整流程,涵盖核心挑战(算力、功耗、实时性、资源限制)与设计原则,详细对比主流边缘AI芯片平台(如ESP32-S3、RK3588、Jetson系列、Coral等)的性能参数与适用场景,并以RK3588部署YOLOv8为例,演示从PyTorch模型导出、ONNX转换、RKNN量化到Tengine推理的全流程。文章重点介绍多维度优化策略,包括模型轻量化(结构选择、输入尺寸调整)、量化(INT8/FP16)、剪枝与蒸馏、算子融合、批处理、硬件加速预处理及DVFS动态调频等,显著提升帧率并降低功耗。通过三个实战案例验证优化效果,最后提供常见问题解决方案与未来技术趋势。; 适合人群:具备一定AI模型开发经验的工程师,尤其是从事边缘计算、嵌入式AI、计算机视觉应用研发的技术人员,工作年限建议1-5年;熟悉Python、C++及深度学习框架(如PyTorch、TensorFlow)者更佳。; 使用场景及目标:①在资源受限的边缘设备上高效部署AI模型;②实现高帧率与低功耗的双重优化目标;③掌握从芯片选型、模型转换到系统级调优的全链路能力;④解决实际部署中的精度损失、内存溢出、NPU利用率低等问题。; 阅读建议:建议结合文中提供的代码实例与工具链(如RKNN Toolkit、Tengine、TensorRT)动手实践,重点关注量化校准、模型压缩与硬件协同优化环节,同时参考选型表格匹配具体应用场景,并利用功耗监测工具进行闭环调优。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值