剑指offer:旋转数组的最小数字
题目:
将一个数组最开始的若干个元素搬到数组的末尾,我们称为数组的旋转。输入
一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组{3,4,5,1,2}
为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
思路:
1.最简单的是将数组循环一遍,这是O(n)的解法,不过没有用到旋转数组的特性,肯定不满足要求。
2.注意到旋转后的数组实际可以分为两个排序的子数组,而且前面子数组的元素都大于或者
等于(注意特例)后面子数组的元素。我们还注意到最小的元素恰好是这两个子数组的分界线。在排序的数组中
我们可以使用二分查找实现O(logn)的查找。
实现:
牛客网编程通过。
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
int length = rotateArray.size();
int target;
if (rotateArray[0] < rotateArray[length - 1]) return rotateArray[0]; //这时说明是有序的
target = Binary_find(rotateArray, 0, length - 1);
return target;
}
private:
int Binary_find(vector<int> array, int lo , int hi)
{
if (lo + 1 == hi) return array[hi]; //递归出口,当lo和hi相邻时
int mid = lo + (hi - lo) / 2; //这样写是为了避免溢出,试想lo、hi都很大的情况
if (array[mid] > array[lo]) return Binary_find(array, mid, hi);
else if (array[mid] < array[hi]) return Binary_find(array, lo, mid);
else
{
int min = lo;
for (int i = lo ; i <= hi; i++)
{
if (array[i] < array[min]) min = i;
}
return array[min];
}
}
};
注:
1. 首先要注意如果旋转数组的第0个元素小于最后一个元素,说明本身有序,直接输出第0个元素。
2. 如果出现array[mid] == array[lo] == array[hi], 则没有办法缩小范围,直接进行顺序搜索。
如下图: