机器学习
文章平均质量分 88
stark_summer
这个作者很懒,什么都没留下…
展开
-
python FastAPI 如何解决并发和性能问题
FastAPI 是一个基于 Python 3.6+ 的 Web 框架,它具有简单易用、高性能、快速编写 API 等特点。原创 2023-05-22 07:22:51 · 15876 阅读 · 3 评论 -
深度学习踩坑经验沉淀【持续更新】
在深度学习炼丹过程中,总会遇到各种奇怪问题,这个时候总会在csdn和知乎平台找到答案,那每次遇到的问题是解决了,但没有记录起来,确实太可惜,因为未来某个时间或者某个人会遇到类似问题,所以在这片文章专项整理,pytorch、python、conda、pip等问题,希望能给大家更多帮助。原创 2023-05-21 22:25:54 · 2048 阅读 · 1 评论 -
mac OS X10.11.5安装scikit-learn后运行出现ValueError: numpy.dtype has the wrong size的错误
安装机器学习类库 通过pip命令安装机器学习类库 numpy,scipy,scikit-learn sudo pip install numpy scipy scikit-learn 但是安装后,运行机器学习算法,报错如下:Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Library/Py原创 2016-07-21 11:18:14 · 2054 阅读 · 0 评论 -
机器学习简史
最近学习的重点不在机器学习上面,但是现代的学科就是这么奇妙,错综复杂,玩着玩着,你发现又回到了人工智能这一块。所以干脆好好整理下当下令很多人如痴如醉,但又不容易入门的机器学习。一来给大多数还没有入门的人一点宏观概念,二来让我自己以后找解决办法的时候更有头绪。故此文不是给想快速上手的工程师的菜单,更像一篇娓娓道来的武侠小说,看看人工智能世界的先驱们是如何开宗创派的。一、从人工智能说起转载 2015-12-20 16:30:02 · 5561 阅读 · 0 评论 -
机器学习概念整理
伯努利分布: https://zh.wikipedia.org/wiki/%E4%BC%AF%E5%8A%AA%E5%88%A9%E5%88%86%E5%B8%83主成分分析: https://zh.wikipedia.org/wiki/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90均方差: https://zh.wikipedia.org/wi原创 2015-12-10 15:01:53 · 1679 阅读 · 0 评论 -
机器学习疑问整理
回答一: 感觉logistic模型的优点有如下: 1. logistic是线性模型,在相同的条件下线性模型的稳定要优于非线性模型; 2. logistic模型的效果评价除了验证数据集外,还有统计学的验证,感觉更严谨; 3. logistic是基于统计学原理的,更容易让统计和数学背景的人接受; 4. 模型参数的解释更科学,比如某变量的影响直接用发生比就能解释; 5.原创 2015-12-09 14:53:30 · 1319 阅读 · 0 评论 -
机器学习算法实现的演化
下面将会对机器学习算法的不同的实现范式进行讲解,既有来自文献中的,也有来自开源社区里的。首先,这里列出了目前可用的三代机器学习工具。传统的机器学习和数据分析的工具,包括SAS,IBM的SPSS,Weka以及R语言。它们可以在小数据集上进行深度分析——工具所运行的节点的内存可以容纳得下的数据集。第二代机器学习工具,包括Mahout,Pentaho,以及RapidMiner。它们可以对大数据进行我称转载 2015-11-14 11:33:19 · 2100 阅读 · 0 评论 -
稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB
稀疏矩阵是指矩阵中的元素大部分是0的矩阵,事实上,实际问题中大规模矩阵基本上都是稀疏矩阵,很多稀疏度在90%甚至99%以上。因此我们需要有高效的稀疏矩阵存储格式。本文总结几种典型的格式:COO,CSR,DIA,ELL,HYB。Coordinate(COO) 这是最简单的一种格式,每一个元素需要用一个三元组来表示,分别是(行号,列号,数值),对应上图右边的一列。这种方式简单,但是记录单信息多(行列)原创 2015-10-11 18:06:11 · 26738 阅读 · 0 评论 -
认识每一个“你”:微博中的用户模型
社交媒体(Social Media)相对于传统互联网媒体的最大区别是通过建立人与人之间的联系,极大提升了信息生产量以及传播效率。身处社交媒体中的每个人或组织同时扮演着信息生产者、传播者与接受者的角色。在社交媒体背景下,用户生产、传播和接收信息更加便捷,使得之前相对集中的用户兴趣和行为变得更加碎片化和离散,因此社交媒体中的用户模型的构建和应用也发生了巨大的变化。微博经历了6年的发展,转载 2015-11-09 14:01:15 · 12348 阅读 · 0 评论 -
机器学习算法的本质(Python和R准则)
系统化讲解关于机器学习算法,看到有人翻译过这篇文章,但感觉还是原文更好。 http://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/#rd?sukey=e74171513d3453dd223d8ac2deeb49e1eac3a7c7511b955187120c332b0e4df30837b86c69转载 2015-10-10 10:45:09 · 8519 阅读 · 0 评论 -
程序员初学机器学习的四种方式
网址 http://machinelearningmastery.com/self-study-machine-learning-projects/学习机器学习有很多方法,大多数人选择从理论开始。 如果你是个程序员,那么你已经掌握了把问题拆分成相应组成部分及设计小项目原型的能力,这些能力能帮助你学习新的技术、类库和方法。这些对任何一个职业程序员来说都是重要的能力,现在它们也能用在初学机器学习上。原创 2015-10-01 16:31:53 · 13695 阅读 · 1 评论 -
Peacock:大规模主题模型及其在腾讯业务中的应用
如果用户最近搜索了“红酒木瓜汤”,那么应该展示什么样的广告呢?从字面上理解,可能应该返回酒水或者水果类广告。可是你知道吗?“红酒木瓜汤”其实是一个民间丰胸秘方。如果机器能理解这个隐含语义,就能展示丰胸或者美容广告——这样点击率一定很高。在广告、搜索和推荐中,最重要的问题之一就是理解用户兴趣以及页面、广告、商品等的隐含语义。让机器能自动学习和理解人类语言中近百万种语义,以及从海量用户行为数据转载 2015-10-02 17:27:06 · 15242 阅读 · 0 评论