Water Balance CodeForces - 1300E

There are nn water tanks in a row, ii-th of them contains aiai liters of water. The tanks are numbered from 11 to nn from left to right.

You can perform the following operation: choose some subsegment [l,r][l,r] (1≤l≤r≤n1≤l≤r≤n), and redistribute water in tanks l,l+1,…,rl,l+1,…,r evenly. In other words, replace each of al,al+1,…,aral,al+1,…,ar by al+al+1+⋯+arr−l+1al+al+1+⋯+arr−l+1. For example, if for volumes [1,3,6,7][1,3,6,7] you choose l=2,r=3l=2,r=3, new volumes of water will be [1,4.5,4.5,7][1,4.5,4.5,7]. You can perform this operation any number of times.

What is the lexicographically smallest sequence of volumes of water that you can achieve?

As a reminder:

A sequence aa is lexicographically smaller than a sequence bb of the same length if and only if the following holds: in the first (leftmost) position where aa and bb differ, the sequence aa has a smaller element than the corresponding element in bb.

Input
The first line contains an integer nn (1≤n≤1061≤n≤106) — the number of water tanks.

The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1061≤ai≤106) — initial volumes of water in the water tanks, in liters.

Because of large input, reading input as doubles is not recommended.

Output
Print the lexicographically smallest sequence you can get. In the ii-th line print the final volume of water in the ii-th tank.

Your answer is considered correct if the absolute or relative error of each aiai does not exceed 10−910−9.

Formally, let your answer be a1,a2,…,ana1,a2,…,an, and the jury’s answer be b1,b2,…,bnb1,b2,…,bn. Your answer is accepted if and only if |ai−bi|max(1,|bi|)≤10−9|ai−bi|max(1,|bi|)≤10−9 for each ii.

Examples
Input
4
7 5 5 7
Output
5.666666667
5.666666667
5.666666667
7.000000000
Input
5
7 8 8 10 12
Output
7.000000000
8.000000000
8.000000000
10.000000000
12.000000000
Input
10
3 9 5 5 1 7 5 3 8 7
Output
3.000000000
5.000000000
5.000000000
5.000000000
5.000000000
5.000000000
5.000000000
5.000000000
7.500000000
7.500000000
Note
In the first sample, you can get the sequence by applying the operation for subsegment [1,3][1,3].

In the second sample, you can’t get any lexicographically smaller sequence.
思路:一开始我们将每一个数字当做一个区域,从后往前遍历,如果当前区域加上之前的区域可以使得平均值变小的话,那么我们就合并这两个区域,这样出来就是最优的了。
代码如下:

#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int maxx=1e6+100;
struct node{
	ll num;
	ll cnt;
}p[maxx];
ll a[maxx];
int n;

int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
	int fro=0;
	p[++fro].num=a[n];
	p[fro].cnt=1ll;
	for(int i=n-1;i>=1;i--)
	{
		ll cnt=1ll;ll sum=a[i];
		while(fro&&p[fro].num*(p[fro].cnt+cnt)<p[fro].cnt*(p[fro].num+sum))
		{
			cnt+=p[fro].cnt;
			sum+=p[fro].num;
			--fro;
		}
		p[++fro].cnt=cnt;
		p[fro].num=sum;
	}
	for(int i=fro;i>=1;i--)
	{
		for(int j=1;j<=p[i].cnt;j++) printf("%.9lf\n",(double)p[i].num/(double)p[i].cnt);
	}
	return 0;
}

努力加油a啊,(o)/~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

starlet_kiss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值