Minimum Ternary String CodeForces - 1009B(思维)

本文介绍了一种算法,用于通过特定的字符交换操作,将由字符'0'、'1'和'2'组成的字符串优化为字典序最小的形式。重点讨论了如何保持'1'向前移动,同时保持'0'和'2'之间的相对位置不变,以实现最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given a ternary string (it is a string which consists only of characters ‘0’, ‘1’ and ‘2’).

You can swap any two adjacent (consecutive) characters ‘0’ and ‘1’ (i.e. replace “01” with “10” or vice versa) or any two adjacent (consecutive) characters ‘1’ and ‘2’ (i.e. replace “12” with “21” or vice versa).

For example, for string “010210” we can perform the following moves:

“010210” →→ “100210”;
“010210” →→ “001210”;
“010210” →→ “010120”;
“010210” →→ “010201”.
Note than you cannot swap “02” →→ “20” and vice versa. You cannot perform any other operations with the given string excluding described above.

You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).

String aa is lexicographically less than string bb (if strings aa and bb have the same length) if there exists some position ii (1≤i≤|a|1≤i≤|a|, where |s||s| is the length of the string ss) such that for every j<ij<i holds aj=bjaj=bj, and ai<biai<bi.

Input
The first line of the input contains the string ss consisting only of characters ‘0’, ‘1’ and ‘2’, its length is between 11 and 105105 (inclusive).

Output
Print a single string — the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).

Examples
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
思路:很不错的一道题目。1可以和0交换,也可以和2交换。那么1就要尽可能的往前。0和2不能交换,那么第一个2后面的那些0和2的相对位置是不会变的,因为1我们要让它尽可能的往前,这样才是最优的。因此我们将第一个2前面的0放置在最前面,后面排上所有的1,剩下的0和2相对位置就不变了。
代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<stack>
#include<map>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=1e5+10;
typedef long long ll;
char s[maxn],str[maxn];
int main()
{
    scanf("%s",&s);
    int n = strlen(s);
    int sum = 0// 第一个2 前边0 的个数 
    int sum1 = 0;  // 1 的个数
    int k = 0,flag = 0;
    for(int i=0;i<n;i++)
    {
        if(s[i]=='0' && flag==0)
            sum++;
        else if(s[i]=='0' && flag==1)
            str[k++] = s[i];
        else if(s[i]=='1')
            sum1++;
        else if(s[i]=='2')
        {
            flag = 1;
            str[k++] = s[i];
        }
    }
    for(int i=0;i<sum;i++)
        printf("0");
    for(int i=0;i<sum1;i++)
        printf("1");
    printf("%s\n",str);
    return 0;
}

努力加油a啊,(o)/~

内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

starlet_kiss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值