Longest Palindrome CodeForces - 1304B(思维)

Returning back to problem solving, Gildong is now studying about palindromes. He learned that a palindrome is a string that is the same as its reverse. For example, strings “pop”, “noon”, “x”, and “kkkkkk” are palindromes, while strings “moon”, “tv”, and “abab” are not. An empty string is also a palindrome.

Gildong loves this concept so much, so he wants to play with it. He has $ n n n$ distinct strings of equal length $ m m m$. He wants to discard some of the strings (possibly none or all) and reorder the remaining strings so that the concatenation becomes a palindrome. He also wants the palindrome to be as long as possible. Please help him find one.

Input
The first line contains two integers $ n n n$ and $ m m m$ ($ 1 ≤ n ≤ 100 1 \le n \le 100 1n100$, $ 1 ≤ m ≤ 50 1 \le m \le 50 1m50$) — the number of strings and the length of each string.

Next $ n n n$ lines contain a string of length $ m m m$ each, consisting of lowercase Latin letters only. All strings are distinct.

Output
In the first line, print the length of the longest palindrome string you made.

In the second line, print that palindrome. If there are multiple answers, print any one of them. If the palindrome is empty, print an empty line or don’t print this line at all.

Examples

Input
3 3
tab
one
bat
Output
6
tabbat
Input
4 2
oo
ox
xo
xx
Output
6
oxxxxo
Input
3 5
hello
codef
orces
Output
0

Input
9 4
abab
baba
abcd
bcde
cdef
defg
wxyz
zyxw
ijji
Output
20
ababwxyzijjizyxwbaba
Note
In the first example, “battab” is also a valid answer.

In the second example, there can be 4 different valid answers including the sample output. We are not going to provide any hints for what the others are.

In the third example, the empty string is the only valid palindrome string.
在家上课就没那么多时间写题了,巨烦!!
虽然是个B题,但是要注意的地方还是挺多的。
录入一个字符串之后,我们要判断它的反转字符串是否存在。但是呢,要注意一点,就是自己是自己的反转字符串,这样的情况只能出现一次。但是如果有两个相同的这样的串,例如有两个xx,这就可以都拼接上了,直接暴力就可以。
代码如下:

#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int maxx=101;
string s[maxx];
map<string,int>mp;
int n,m;

int main()
{
	cin>>n>>m;
	mp.clear();
	string t1="",t2="";
	for(int i=0;i<n;i++) cin>>s[i],mp[s[i]]++;
	string x;
	int flag=0;
	for(int i=0;i<n;i++)
	{
		x=s[i];
		reverse(s[i].begin(),s[i].end());
		swap(x,s[i]);
		if(mp[s[i]]<=0) continue;
		if(mp[x])
		{
			if(x==s[i]&&mp[x]==1&&flag==0) t1=t1+x,flag=1,mp[x]--;
			else if(x!=s[i]||(x==s[i]&&mp[x]>1))t1=s[i]+t1,t2=t2+x,mp[x]--,mp[s[i]]--;
		}
	}
	t1=t1+t2;
	cout<<t1.length()<<endl;
	cout<<t1<<endl;
	return 0;
}

努力加油a啊,(o)/~

CodeForces - 616D是一个关于找到一个序列中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序列和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序列最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序列,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

starlet_kiss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值