CodeForces 1324E Sleeping Schedule(dp)

Vova had a pretty weird sleeping schedule. There are h hours in a day. Vova will sleep exactly n times. The i-th time he will sleep exactly after ai hours from the time he woke up. You can assume that Vova woke up exactly at the beginning of this story (the initial time is 0). Each time Vova sleeps exactly one day (in other words, h hours).

Vova thinks that the i-th sleeping time is good if he starts to sleep between hours l and r inclusive.

Vova can control himself and before the i-th time can choose between two options: go to sleep after ai hours or after ai−1 hours.

Your task is to say the maximum number of good sleeping times Vova can obtain if he acts optimally.

Input
The first line of the input contains four integers n,h,l and r (1≤n≤2000,3≤h≤2000,0≤l≤r<h) — the number of times Vova goes to sleep, the number of hours in a day and the segment of the good sleeping time.

The second line of the input contains n integers a1,a2,…,an (1≤ai<h), where ai is the number of hours after which Vova goes to sleep the i-th time.

Output
Print one integer — the maximum number of good sleeping times Vova can obtain if he acts optimally.

Example
Input
7 24 21 23
16 17 14 20 20 11 22
Output
3
Note
The maximum number of good times in the example is 3.

The story starts from t=0. Then Vova goes to sleep after a1−1 hours, now the time is 15. This time is not good. Then Vova goes to sleep after a2−1 hours, now the time is 15+16=7. This time is also not good. Then Vova goes to sleep after a3 hours, now the time is 7+14=21. This time is good. Then Vova goes to sleep after a4−1 hours, now the time is 21+19=16. This time is not good. Then Vova goes to sleep after a5 hours, now the time is 16+20=12. This time is not good. Then Vova goes to sleep after a6 hours, now the time is 12+11=23. This time is good. Then Vova goes to sleep after a7 hours, now the time is 23+22=21. This time is also good.
思路:一个赤裸裸的dp标识在那里,那就只有dp去做了。
对于每一个0~h-1的时间点,如果加上a[i]或者a[i-1]然后取余h的结果在[l,r]之间的话,都有可能是某一个起始的时间。这样我们对于每一次,都遍历一下有可能的时间点然后再做转移。初始的dp数组更新为无限小,但是dp[0][0]=0.
状态转移方程为:

if((j+a[i])%h>=l&&(j+a[i])%h<=r) dp[i][(j+a[i])%h]=max(dp[i][(j+a[i])%h],dp[i-1][j]+1);
			else dp[i][(j+a[i])%h]=max(dp[i][(j+a[i])%h],dp[i-1][j]);
if((j+a[i]-1)%h>=l&&(j+a[i]-1)%h<=r) dp[i][(j+a[i]-1)%h]=max(dp[i][(j+a[i]-1)%h],dp[i-1][j]+1);
			else dp[i][(j+a[i]-1)%h]=max(dp[i][(j+a[i]-1)%h],dp[i-1][j]);

代码如下:

#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int maxx=2e3+100;
int dp[maxx][maxx];
int a[maxx];
int n,h,l,r;

int main()
{
	scanf("%d%d%d%d",&n,&h,&l,&r);
	memset(dp,-0x3f3f3f3f,sizeof(dp));dp[0][0]=0;
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	for(int i=1;i<=n;i++)
	{
		for(int j=0;j<h;j++)
		{
			if((j+a[i])%h>=l&&(j+a[i])%h<=r) dp[i][(j+a[i])%h]=max(dp[i][(j+a[i])%h],dp[i-1][j]+1);
			else dp[i][(j+a[i])%h]=max(dp[i][(j+a[i])%h],dp[i-1][j]);
			if((j+a[i]-1)%h>=l&&(j+a[i]-1)%h<=r) dp[i][(j+a[i]-1)%h]=max(dp[i][(j+a[i]-1)%h],dp[i-1][j]+1);
			else dp[i][(j+a[i]-1)%h]=max(dp[i][(j+a[i]-1)%h],dp[i-1][j]);
		}
	}
	int _max=0;
	for(int i=0;i<h;i++) _max=max(_max,dp[n][i]);
	cout<<_max<<endl;
	return 0;
}

努力加油a啊,(o)/~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

starlet_kiss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值