[蓝桥杯]算法提高 秘密行动(动态规划)

问题描述
  小D接到一项任务,要求他爬到一座n层大厦的顶端与神秘人物会面。这座大厦有一个神奇的特点,每层的高度都不一样,同时,小D也拥有一项特殊能力,可以一次向上跳跃一层或两层,但是这项能力无法连续使用。已知向上1高度消耗的时间为1,跳跃不消耗时间。由于事态紧急,小D想知道他最少需要多少时间到达顶层。
输入格式
  第一行包含一个整数n,代表楼的高度。

接下来n行每行一个整数ai,代表i层的楼层高度(ai <= 100)。
输出格式
  输出1行,包含一个整数,表示所需的最短时间。
样例输入
5
3
5
1
8
4
样例输出
1
数据规模和约定
  对20%的数据,n<=10
  对40%的数据,n<=100
  对60%的数据,n<=5000
  对100%的数据,n<=10000
思路:我们设置一个dp数组。
dp[i][0]代表着第i层是由第i-1层爬上来的。
dp[i][1]代表着第i层是由第i-1层跳跃上来的。
dp[i][2]代表着第i层是由第i-2层跳跃上来的。
状态转移方程:

dp[i][0]=min(dp[i-1][0],min(dp[i-1][1],dp[i-1][2]))+a[i];
if(i>=1) dp[i][1]=dp[i-1][0];
if(i>=2) dp[i][2]=dp[i-2][0];

代码如下:

#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int maxx=1e4+100;
int dp[maxx][4];
int a[maxx];
int n;

int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	memset(dp,0,sizeof(dp));
	for(int i=1;i<=n;i++)
	{
		dp[i][0]=min(dp[i-1][0],min(dp[i-1][1],dp[i-1][2]))+a[i];
		if(i>=1) dp[i][1]=dp[i-1][0];
		if(i>=2) dp[i][2]=dp[i-2][0];
	}
	printf("%d\n",min(dp[n][0],min(dp[n][1],dp[n][2])));
	return 0;
}

努力加油a啊,(o)/~

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读