神经网络理论

这篇博客介绍了神经网络的基本概念,包括输入层、输出层和隐藏层,并详细阐述了感知机模型,特别是超平面的定义和线性可分数据集的概念。同时,提到了感知机学习算法用于寻找正确分类数据的超平面。此外,还提及了激活函数和正则化在神经网络中的重要性。
摘要由CSDN通过智能技术生成

一.基本概念

输入层(Input layer),众多神经元(Neuron)接受大量非线形输入消息。输入的消息称为输入向量。
输出层(Output layer),消息在神经元链接中传输、分析、权衡,形成输出结果。输出的消息称为输出向量。
隐藏层(Hidden layer),简称“隐层”,是输入层和输出层之间众多神经元和链接组成的各个层面。隐层可以有一层或多层。隐层的节点(神经元)数目不定,但数目越多神经网络的非线性越显著,从而神经网络的强健性(robustness)(控制系统在一定结构、大小等的参数摄动下,维持某些性能的特性)更显著。习惯上会选输入节点1.2至1.5倍的节点。
这种网络一般称为感知器(对单隐藏层)或多层感知器(对多隐藏层),神经网络的类型已经演变出很多种,这种分层的结构也并不是对所有的神经网络都适用。

在这里插入图片描述

二.感知机:

1,超平面的定义

令w1,w2,…wn,v都是实数® ,其中至少有一个wi不为零,由所有满足线性方程w1x1+w2x2+…+wn*xn=v

的点X=[x1,x2,…xn]组成的集合,称为空间R的超平面。

从定义可以看出:超平面就是点的集合。集合中的某一点X&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值