python中resample函数实现重采样和降采样

本文介绍了Python中用于时间序列分析的resample函数,包括其函数原型、降采样和重采样的概念及用法。降采样是将高频率数据聚合到低频率,如将每日数据聚合为每周数据;重采样涉及值的填充,如用前值或后值填充缺失数据。理解closed和label参数对区间定义的影响是关键。
摘要由CSDN通过智能技术生成

函数原型

resample(self, rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=‘start’, kind=None, loffset=None, limit=None, base=0, on=None, level=None)
比较关键的是rule,closed,label下面会随着两个用法说明

降采样

对时间数据细粒度增大,可以把每天的数据聚合成一周,可以求和或者均值的方式进行聚合
下面给出列子

times=pd.date_range('20180101',periods=30)
ts=pd.Series(np.arange(1,31),index=times)
ts
2018-01-01     1
2018-01-02     2
2018-01-03     3
2018-01-04     4
2018-01-05     5
2018-01-06     6
2018-01-07     7
2018-01-08     8
2018-01-09     9
2018-01-10    10
2018-01-11    11
2018-01-12    12
2018-01-13    13
2018-01-
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值