keras
starter_zheng
这个作者很懒,什么都没留下…
展开
-
Keras —— 序贯模型和函数式模型
序贯模型序贯模型是多个网络层的线性堆叠,是函数式模型的简略版,为最简单的线性、从头到尾的结构顺序,不发生分叉。1、应用序贯模型的基本步骤model.add,添加层;model.compile,模型训练的BP模式设置;model.fit,模型训练参数设置 + 训练;模型评估模型预测2、创建1、可以通过向Sequential模型传递一个layer的list来构造该模...原创 2018-02-20 13:10:47 · 5706 阅读 · 1 评论 -
Keras —— 构造变分自动编码器
变量初始化及函数定义batch_size = 100original_dim = 784latent_dim = 2intermediate_dim = 256nb_epoch = 50epsilon_std = 1.0(x_train, y_train), (x_test, y_test) = mnist.load_data()x_train = x_train.astyp...原创 2018-02-23 11:27:52 · 2081 阅读 · 0 评论 -
Keras —— 可视化VGG16的滤波器
一、变量初始化# 对于每个滤波器,生成图像的维度img_width = 128img_height = 128# 我们想去可视化层的名字# (看模型定义在 keras/applications/vgg16.py)layer_name = 'block5_conv1'二、将张量转换为有效图像def deprocess_image(x): # 对张量进行规范...原创 2018-02-20 20:25:55 · 1844 阅读 · 0 评论 -
Keras —— 绘制模型的acc-loss曲线
一、写一个LossHistory类,保存loss(err)和acc(score)并创建实例class LossHistory(keras.callbacks.Callback): def on_train_begin(self, logs={}): self.losses = {'batch': [], 'epoch': []} self.accur...原创 2018-02-20 19:21:52 · 15574 阅读 · 8 评论 -
Keras —— 基于Mnist数据集建立神经网络模型
一、变量初始化batch_size = 128nb_classes = 10nb_epoch = 20二、准备数据(X_train, y_train), (X_test, y_test) = mnist.load_data()#将3D转化为2DX_train = X_train.reshape(60000, 784)X_test = X_test.reshape(...原创 2018-02-20 18:03:31 · 945 阅读 · 0 评论 -
Keras —— 基于InceptionV3模型(不含全连接层)的迁移学习应用
一、ImageDataGeneratordef image_preprocess(): # 训练集的图片生成器,通过参数的设置进行数据扩增 train_datagen = ImageDataGenerator( preprocessing_function=preprocess_input, rotation_range=30, ...原创 2018-02-25 15:56:20 · 4968 阅读 · 4 评论 -
Keras —— 基于Vgg16模型(含全连接层)的图片识别
一、加载并显示图片img_path = 'elephant.jpg'img = image.load_img(img_path, target_size=(224, 224))plt.imshow(img)plt.show()二、图片预处理#将图片转成numpy arrayx = image.img_to_array(img)#扩展维度,因为preproces...原创 2018-02-20 19:59:42 · 3932 阅读 · 1 评论 -
Keras —— 迁移学习fine-tuning
该程序演示将一个预训练好的模型在新数据集上重新fine-tuning的过程。我们冻结卷积层,只调整全连接层。在MNIST数据集上使用前五个数字[0…4]训练一个卷积网络。在后五个数字[5…9]用卷积网络做分类,冻结卷积层并且微调全连接层一、变量初始化now = datetime.datetime.nowbatch_size = 128nb_classes = 5n...原创 2018-02-23 11:37:42 · 2353 阅读 · 0 评论