hdu4427(dp+数学优化)

链接:点击打开链接

题意:求k个数和为n,最小公倍数为m的种数

代码:

#include <set>
#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
const long long MOD=1000000007;
vector<long long> fac;
long long lcm[1005][1005];
long long dp[2][1005][1005];
long long gcd(long long a,long long b){
    if(b==0)
    return a;
    return gcd(b,a%b);
}
int main(){
    long long n,m,num,i,j,k,p,q,tmp,len;
    for(i=1;i<=1000;i++)
    for(j=1;j<=1000;j++)
    lcm[i][j]=i/gcd(i,j)*j;
    while(scanf("%I64d%I64d%I64d",&n,&m,&num)!=EOF){
        fac.clear();                            //dp[i][j][k]表示i个数,和为j,最小公倍数是k的种数
        for(i=1;i<=m;i++)                       //直接进行转移一定会超时,因此先处理出j的所欲因子
        if(m%i==0)
        fac.push_back(i);
        len=fac.size();
        memset(dp,0,sizeof(dp));
        for(i=0;i<len;i++)                      //因为最小公倍数是m,所以k个数每一个都是m的因子
        dp[1][fac[i]][fac[i]]=1;                //所以直接在因子中间转移
        for(i=1;i<num;i++){
            for(p=i;p<=n;p++)
            for(q=0;q<len;q++)
            dp[(i+1)%2][p][fac[q]]=0;           //不能用memset
            for(j=i;j<=n;j++){
                for(p=0;p<len;p++){
                    if(dp[i%2][j][fac[p]]==0)
                    continue;
                    for(q=0;q<len&&fac[q]+j<=n;q++){
                        tmp=lcm[fac[p]][fac[q]];
                        dp[(i+1)%2][j+fac[q]][tmp]=(dp[(i+1)%2][j+fac[q]][tmp]+dp[i%2][j][fac[p]])%MOD;
                    }
                }
            }
        }
        printf("%I64d\n",dp[num%2][n][m]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值