使用 python-docx 和 difflib 对比 Word 文档

使用 python-docx 和 difflib 对比 Word 文档

以下是一个 Python 脚本示例,用于比较两个 Word 文档的文本内容差异:

from docx import Document
import difflib

def read_word_file(file_path):
    doc = Document(file_path)
    full_text = []
    for para in doc.paragraphs:
        full_text.append(para.text)
    return '\n'.join(full_text)

def compare_word_files(file1, file2):
    text1 = read_word_file(file1)
    text2 = read_word_file(file2)
    
    d = difflib.Differ()
    diff = list(d.compare(text1.splitlines(), text2.splitlines()))
    
    print('\n'.join(diff))

# 使用示例
compare_word_files('document1.docx', 'document2.docx')

安装依赖库

运行前需要安装 python-docx 和 difflib(后者是 Python 标准库):

pip install python-docx

输出结果说明

  • 以 '-' 开头的行表示第一个文档独有的内容
  • 以 '+' 开头的行表示第二个文档独有的内容
  • 以空格开头的行表示两个文档共有的内容

处理复杂格式差异

如果需要比较格式差异(如字体、颜色等),可以使用更专业的库如 python-docx-compare:

from docxcompose.composer import Composer
from docx import Document

doc1 = Document("document1.docx")
doc2 = Document("document2.docx")

composer = Composer(doc1)
composer.append(doc2)
composer.save("compared.docx")

可视化差异输出

对于更直观的差异展示,可以生成 HTML 格式的对比结果:

diff_html = difflib.HtmlDiff().make_file(
    text1.splitlines(), 
    text2.splitlines(),
    fromdesc='Document 1',
    todesc='Document 2'
)
with open('diff.html', 'w') as f:
    f.write(diff_html)

### 如何使用Python实现Word文档查重 为了实现Word文档的查重功能,可以利用多种Python技术组合来达成目标。以下是几种常用方法及其对应的库。 #### 方法一:使用`difflib``python-docx` 这种方法适用于简单的文本内容比较。通过读取两个Word文件中的纯文本数据,并应用内置的`difflib`模块来进行字符串级别的差异分析[^1]。 ```python from docx import Document import difflib def read_docx(file_path): document = Document(file_path) full_text = [] for para in document.paragraphs: full_text.append(para.text) return '\n'.join(full_text) text1 = read_docx('document1.docx') text2 = read_docx('document2.docx') differ = difflib.Differ() diff_result = list(differ.compare(text1.splitlines(), text2.splitlines())) print('\n'.join(diff_result)) ``` 这段代码展示了如何加载两个`.docx`格式的文件,提取其中的文字内容作为字符串处理对象,最后调用`Differ().compare()`函数计算两份文本间的区别。 #### 方法二:基于GUI界面的应用程序——PyQt集成方案 对于更复杂的需求,比如提供图形化用户接口让用户方便操作,则可以选择构建一个桌面应用程序。这里推荐使用`PyQt`框架配合其他必要的组件一起工作[^2]。 虽然具体的实现细节会更加繁琐一些,但是官方示例其他开源项目提供了很好的起点。例如可以从GitHub上找到现成的例子学习借鉴[^5]。 #### 方法三:借助自然语言处理技术提高准确性 当涉及到深层次的内容相似度评估时,仅依靠字符匹配往往不够精确。此时引入NLP领域内的算法能够显著提升效果。特别是像Gensim这样的强大工具包可以帮助建立词袋模型或其他形式的主题空间表示法,从而更好地理解语义层面的一致性[^4]。 ```python from gensim import corpora, models, similarities documents = ["Human machine interface for lab abc computer applications", "A survey of user opinion of computer system response time"] texts = [[word for word in document.lower().split()] for document in documents] dictionary = corpora.Dictionary(texts) corpus = [dictionary.doc2bow(text) for text in texts] tfidf = models.TfidfModel(corpus) index = similarities.SparseMatrixSimilarity(tfidf[corpus], num_features=len(dictionary)) query = "computer human interface" query_bow = dictionary.doc2bow(query.lower().split()) similarity_scores = index[tfidf[query_bow]] for score in similarity_scores: print(score) ``` 上述脚本说明了怎样创建TF-IDF加权矩阵,并据此衡量查询串与其他已知样本之间的关联程度。这同样适合用来判断不同版本之间是否存在抄袭嫌疑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

std86021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值