洛谷P2522 容斥原理+莫比乌斯反演

题意:

给出 a , b , c , d , k a,b,c,d,k a,b,c,d,k,计算
∑ i = a b ∑ j = c d [ g c d ( i , j ) = k ] \sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)=k] i=abj=cd[gcd(i,j)=k]

Solution:

法一:


f ( n , m ) = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = k ] f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=k] f(n,m)=i=1nj=1m[gcd(i,j)=k]
容斥原理,原题即求
f ( b , d ) − f ( a − 1 , d ) − f ( b , c − 1 ) + f ( a − 1 , c − 1 ) f(b,d)-f(a-1,d)-f(b,c-1)+f(a-1,c-1) f(b,d)f(a1,d)f(b,c1)+f(a1,c1)
现在只需要求 f ( n , m ) f(n,m) f(n,m),由于出现布尔表达式,考虑莫比乌斯反演,莫比乌斯反演需要 [ . . . = 1 ] [...=1] [...=1]形式,于是改写成
∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ [ g c d ( i , j ) = 1 ] \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[gcd(i,j)=1] i=1knj=1km[gcd(i,j)=1]
莫比乌斯反演,即求
∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ∑ d ∣ g c d ( i , j ) μ ( d ) \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\sum_{d|gcd(i,j)}\mu(d) i=1knj=1kmdgcd(i,j)μ(d)
更换枚举项为因子 d d d
∑ d = 1 m i n { ⌊ n k ⌋ , ⌊ m k ⌋ } μ ( d ) ∑ i = 1 ⌊ n d k ⌋ ∑ i = 1 ⌊ m d k ⌋ 1 \sum_{d=1}^{min\{\lfloor\frac{n}{k}\rfloor,\lfloor\frac{m}{k}\rfloor\}}\mu(d)\sum_{i=1}^{\lfloor\frac{n}{dk}\rfloor}\sum_{i=1}^{\lfloor\frac{m}{dk}\rfloor}1 d=1min{kn,km}μ(d)i=1dkni=1dkm1
由于 n , m n,m n,m轮换,不妨设 n ≤ m n\leq m nm,即
∑ d = 1 ⌊ n k ⌋ μ ( d ) ⌊ n d k ⌋ ⌊ m d k ⌋ \sum_{d=1}^{\lfloor\frac{n}{k}\rfloor}\mu(d)\lfloor\frac{n}{dk}\rfloor\lfloor\frac{m}{dk}\rfloor d=1knμ(d)dkndkm
整除分块即可快速求得此式, μ ( d ) \mu(d) μ(d)部分只需要线性筛后处理前缀和,需要注意的是,此处需要求单个 μ ( i ) \mu(i) μ(i)而不是 ∑ μ ( i ) \sum \mu(i) μ(i),所以 i % p r i m e [ j ] = 0 i\%prime[j]=0 i%prime[j]=0时结果是0

// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
#include<bitset>
#include<map>
using namespace std;

using ll=long long;
const int N=5e4+5,inf=0x3fffffff;
const long long INF=0x3fffffffffffffff,mod=20101009;

bool nt[N];
int prime[N],cnt,mu[N];

void make_prime()
{
    mu[1]=1;
    for(int i=2;i<=50000;i++)
    {
        if(!nt[i]) prime[++cnt]=i,mu[i]=-1;
        for(int j=1;j<=cnt&&i*prime[j]<=50000;j++)
        {
            nt[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else mu[i*prime[j]]=mu[i]*mu[prime[j]];
        }
    }
    for(int i=1;i<=50000;i++) mu[i]+=mu[i-1];
}

ll solve(ll n,ll m,ll x)
{
    ll ret=0,l=1,r;
    n/=x; m/=x;
    while(l<=min(n,m))
    {
        r=min(min(n,m),min(n/(n/l),m/(m/l)));
        ret+=(n/l)*(m/l)*(mu[r]-mu[l-1]);
        l=r+1;
    }
    return ret;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    make_prime();
    int t; cin>>t;
    while(t--)
    {
        ll a,b,c,d,k; cin>>a>>b>>c>>d>>k;
        cout<<solve(b,d,k)-solve(a-1,d,k)-solve(b,c-1,k)+solve(a-1,c-1,k)<<'\n';
    }
    return 0;
}
法二:

不用容斥,直接在原式上操作
∑ i = a b ∑ j = c d [ g c d ( i , j ) = k ] ⇒ ∑ i = ⌈ a k ⌉ ⌊ b k ⌋ ∑ i = ⌈ c k ⌉ ⌊ d k ⌋ [ g c d ( i , j ) = 1 ] = ∑ i = ⌈ a k ⌉ ⌊ b k ⌋ ∑ i = ⌈ c k ⌉ ⌊ d k ⌋ ∑ d ∣ g c d ( i , j ) μ ( d ) \sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)=k]\Rightarrow \sum_{i=\lceil\frac{a}{k}\rceil}^{\lfloor\frac{b}{k}\rfloor}\sum_{i=\lceil\frac{c}{k}\rceil}^{\lfloor\frac{d}{k}\rfloor}[gcd(i,j)=1]=\sum_{i=\lceil\frac{a}{k}\rceil}^{\lfloor\frac{b}{k}\rfloor}\sum_{i=\lceil\frac{c}{k}\rceil}^{\lfloor\frac{d}{k}\rfloor}\sum_{d|gcd(i,j)}\mu(d) i=abj=cd[gcd(i,j)=k]i=kakbi=kckd[gcd(i,j)=1]=i=kakbi=kckddgcd(i,j)μ(d)
注意上式的求和开始的下标是上取整

优先枚举因子 d d d,假设 b ≤ d b\leq d bd f ( x , l , r ) f(x,l,r) f(x,l,r) x x x在区间 [ l , r ] [l,r] [l,r]有多少个倍数
∑ d = 1 ⌊ b k ⌋ μ ( d ) f ( d , ⌈ a k ⌉ , ⌊ b k ⌋ ) f ( d , ⌈ c k ⌉ , ⌊ d k ⌋ ) \sum_{d=1}^{\lfloor\frac{b}{k}\rfloor}\mu(d)f(d,\lceil\frac{a}{k}\rceil,\lfloor\frac{b}{k}\rfloor)f(d,\lceil\frac{c}{k}\rceil,\lfloor\frac{d}{k}\rfloor) d=1kbμ(d)f(d,ka,kb)f(d,kc,kd)
对于 f ( x , l , r ) f(x,l,r) f(x,l,r),一个形式是
f ( x , l , r ) = ⌊ r k ⌋ − ⌈ l k ⌉ + 1 f(x,l,r)=\lfloor\frac{r}{k}\rfloor-\lceil\frac{l}{k}\rceil+1 f(x,l,r)=krkl+1
这有上取整,是很不好处理的,下取整只能求得小于等于某个值的倍数有多少个,而 [ l , r ] [l,r] [l,r]的倍数个数可以容斥得到为小于等于 r r r的倍数的个数-小于等于 l − 1 l-1 l1的倍数的个数,于是也可以写作如下形式
f ( x , l , r ) = ⌊ r k ⌋ − ⌊ l − 1 k ⌋ f(x,l,r)=\lfloor\frac{r}{k}\rfloor-\lfloor\frac{l-1}{k}\rfloor f(x,l,r)=krkl1
代入原式后数论分块就可以求得答案,需要注意特判分母为0,不然会RE。这样的写法不需要容斥,常数小,更大的好处是容斥的时间复杂度是 2 n 2^n 2n n n n是容斥元素个数,当 n n n很大的时候是不能容斥的,需要这样子计算

// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
#include<bitset>
#include<map>
using namespace std;

using ll=long long;
const int N=5e4+5,inf=0x3fffffff;
const long long INF=0x3fffffffffffffff,mod=20101009;

ll ceil(ll x,ll y){
    return x%y?x/y+1:x/y;
}

bool nt[N];
int prime[N],cnt,mu[N];

void make_prime()
{
    mu[1]=1;
    for(int i=2;i<=50000;i++)
    {
        if(!nt[i]) prime[++cnt]=i,mu[i]=-1;
        for(int j=1;j<=cnt&&i*prime[j]<=50000;j++)
        {
            nt[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else mu[i*prime[j]]=mu[i]*mu[prime[j]];
        }
    }
    for(int i=1;i<=50000;i++) mu[i]+=mu[i-1];
}

ll solve(ll a,ll b,ll c,ll d)
{
    ll ret=0;
    for(ll l=1,r;l<=b;l=r+1)
    {
        r=min(b/(b/l),d/(d/l));
        if((a-1)/l) r=min(r,(a-1)/((a-1)/l));
        if((c-1)/l) r=min(r,(c-1)/((c-1)/l));
        ret+=(mu[r]-mu[l-1])*(b/l-(a-1)/l)*(d/l-(c-1)/l);
    }
    return ret;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0); make_prime();
    int t; cin>>t;
    while(t--)
    {
        ll a,b,c,d,k; cin>>a>>b>>c>>d>>k;
        if(b>d) swap(a,c),swap(b,d);
        cout<<solve(ceil(a,k),b/k,ceil(c,k),d/k)<<endl;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值