洛谷P2520 裴蜀定理,多限制的不定方程解的构造

题意:

给出八个基底向量:
( a , b ) , ( − a , b ) , ( a , − b ) , ( − a , − b ) , ( b , a ) , ( − b , a ) , ( b , − a ) , ( − b , − a ) (a,b),(-a,b),(a,-b),(-a,-b),(b,a),(-b,a),(b,-a),(-b,-a) (a,b),(a,b),(a,b),(a,b),(b,a),(b,a),(b,a),(b,a)
问能否通过若干个上述向量相加得到相邻 ( x , y ) (x,y) (x,y)

Solution:

显然我们只需加减以下四组基底相邻即可
( a , b ) , ( − a , b ) , ( b , a ) , ( − b , a ) (a,b),(-a,b),(b,a),(-b,a) (a,b),(a,b),(b,a),(b,a)
不妨设他们分别被算数增加了 k i k_{i} ki次, k i ∈ Z k_{i}\in Z kiZ,于是需要下列方程组有解
k 1 ( a , b ) + k 2 ( − a , b ) + k 3 ( b , a ) + k 4 ( − b , a ) = ( x , y ) k_{1}(a,b)+k_{2}(-a,b)+k_{3}(b,a)+k_{4}(-b,a)=(x,y) k1(a,b)+k2(a,b)+k3(b,a)+k4(b,a)=(x,y)

{ ( k 1 − k 2 ) a + ( k 3 − k 4 ) b = x ( k 1 + k 2 ) a + ( k 3 + k 4 ) b = y \begin{cases} (k_{1}-k_{2})a+(k_{3}-k_{4})b=x \\ (k_{1}+k_{2})a+(k_{3}+k_{4})b=y \end{cases} {(k1k2)a+(k3k4)b=x(k1+k2)a+(k3+k4)b=y
要方程组有解,这是两个不定方程,由裴蜀定理,首先需要
g c d ( k 1 − k 2 , k 3 − k 4 ) ∣ x g c d ( k 1 + k 2 , k 3 + k 4 ) ∣ y gcd(k_{1}-k_{2},k_{3}-k_{4})|x\\ gcd(k_{1}+k_{2},k_{3}+k_{4})|y gcd(k1k2,k3k4)xgcd(k1+k2,k3+k4)y
然后这样只保证了存在 ( k 1 − k 2 ) , ( k 1 + k 2 ) , ( k 3 − k 4 ) , ( k 3 + k 4 ) (k_{1}-k_{2}),(k_{1}+k_{2}),(k_{3}-k_{4}),(k_{3}+k_{4}) (k1k2),(k1+k2),(k3k4),(k3+k4),我们的目的是使 k i k_{i} ki有正整数解,此时我们可以这样解出 k 1 k_{1} k1
k 1 = ( k 1 − k 2 ) + ( k 1 + k 2 ) 2 k_{1}=\frac{(k_{1}-k_{2})+(k_{1}+k_{2})}{2} k1=2(k1k2)+(k1+k2)
要使 k 1 k_{1} k1是正整数,那么必须要分子为偶数,于是 ( k 1 + k 2 ) (k_{1}+k_{2}) (k1+k2) ( k 1 − k 2 ) (k_{1}-k_{2}) (k1k2)奇偶性必须相同,同理对后两项也是的,接下来枚举他们的奇偶性:

  • ( k 1 − k 2 ) (k_{1}-k_{2}) (k1k2)为偶数, ( k 3 − k 4 ) (k_{3}-k_{4}) (k3k4)为偶数,那么方程组的 ( 1 ) (1) (1)式就可以写作
    2 [ ( k 1 − k 2 ) a + ( k 3 − k 4 ) b ] = x ⇒ ( k 1 − k 2 ) ( 2 a ) + ( k 3 − k 4 ) ( 2 b ) = x 2[(k_{1}-k_{2})a+(k_{3}-k_{4})b]=x\Rightarrow(k_{1}-k_{2})(2a)+(k_{3}-k_{4})(2b)=x 2[(k1k2)a+(k3k4)b]=x(k1k2)(2a)+(k3k4)(2b)=x
    此时只需要上述方程有解,就可以保证解出来的 ( k 1 − k 2 ) (k_{1}-k_{2}) (k1k2)为偶数了,即只需要
    g c d ( 2 a , 2 b ) ∣ x gcd(2a,2b)|x gcd(2a,2b)x
    同理可得
    g c d ( 2 a , 2 b ) ∣ y gcd(2a,2b)|y gcd(2a,2b)y

  • ( k 1 − k 2 ) (k_{1}-k_{2}) (k1k2)为偶数, ( k 3 − k 4 ) (k_{3}-k_{4}) (k3k4)为奇数,只需要左右两边 + b +b +b,得到
    ( k 1 − k 2 ) a + ( k 3 − k 4 + 1 ) b = x + b (k_{1}-k_{2})a+(k_{3}-k_{4}+1)b=x+b (k1k2)a+(k3k4+1)b=x+b
    这就转化为都是偶数的情形了,同上只需要
    g c d ( 2 a , 2 b ) ∣ ( x + b ) , g c d ( 2 a , 2 b ) ∣ ( y + a ) gcd(2a,2b)|(x+b),gcd(2a,2b)|(y+a) gcd(2a,2b)(x+b),gcd(2a,2b)(y+a)

    下面两种情况同理,直接给出结论
  • ( k 1 − k 2 ) (k_{1}-k_{2}) (k1k2)为奇数, ( k 3 − k 4 ) (k_{3}-k_{4}) (k3k4)为偶数,只需要
    g c d ( 2 a , 2 b ) ∣ ( x + a ) , g c d ( 2 a , 2 b ) ∣ ( y + b ) gcd(2a,2b)|(x+a),gcd(2a,2b)|(y+b) gcd(2a,2b)(x+a),gcd(2a,2b)(y+b)

  • ( k 1 − k 2 ) (k_{1}-k_{2}) (k1k2)为奇数, ( k 3 − k 4 ) (k_{3}-k_{4}) (k3k4)为奇数,只需要
    g c d ( 2 a , 2 b ) ∣ ( x + a + b ) , g c d ( 2 a , 2 b ) ∣ ( y + a + b ) gcd(2a,2b)|(x+a+b),gcd(2a,2b)|(y+a+b) gcd(2a,2b)(x+a+b),gcd(2a,2b)(y+a+b)

上述四种情况满足一个即代表有解,并且上面每一种都包含最开始的裴蜀定理的条件,就无需再验证裴蜀定理了

// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<numeric>
#include<ctime>
using namespace std;

using ll=long long;
const int N=25,inf=0x3fffffff;
const long long INF=0x3fffffffffffffff,mod=1e9+7;

template<class T>
T gcd(T a,T b){
    return !b?a:gcd(b,a%b);
}

ll tmp;

bool check(ll x,ll y){return x%tmp==0&&y%tmp==0;}

int main()
{
    #ifdef stdjudge
        freopen("in.txt","r",stdin);
    #endif
    int t; cin>>t;
    while(t--)
    {
        ll a,b,x,y; cin>>a>>b>>x>>y;
        tmp=gcd(a,b)<<1;
        if(check(x,y)||check(x+b,y+a)||check(x+a,y+b)||check(x+a+b,y+a+b)) printf("Y\n");
        else printf("N\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值