Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6 5 1 4 1 6 1 7 2 7 2 8 3 0
简单DP题,数塔问题的变形,把位置看作行,把时间看作列,dp[5][0]就是最终的结果。
状态转移方程为:i=0,dp[0][j]+=max(dp[0][j+1],dp[1][j+1]);
i=10,dp[10][j]+=max(dp[9][j+1],dp[10][j+1]);
i=1 t0 9,dp[i][j]+=max(dp[i][j+1],dp[i-1][j+1],dp[i+1][j+1]);
代码:
#include<stdio.h> #include<string.h> int dp[15][100005]; int Max(int a,int b) { if(a>b) return a; return b; } int max1(int a,int b,int c) { if(a<b) a=b; if(a<c) a=c; return a; } int main() { int n,i,j,a,b,max; while(scanf("%d",&n),n) { int k=0; memset(dp,0,sizeof(dp)); for(i=0;i<n;i++) { scanf("%d%d",&a,&b); dp[a][b]++; if(k<b) k=b; } for(i=k-1;i>=0;i--) { dp[0][i]+=Max(dp[0][i+1],dp[1][i+1]); dp[10][i]+=Max(dp[10][i+1],dp[9][i+1]); for(j=1;j<=9;j++) dp[j][i]+=max1(dp[j][i+1],dp[j-1][i+1],dp[j+1][i+1]); } printf("%d\n",dp[5][0]); } return 0; }