Codeforces Round #150 (Div. 2)

A : 略。

 

B:

题意:

            求小于等于n的数中,如果该数中不同数字的个数小于等于2,则计数加一。

解题思路:

           这题貌似有很多方法,我是这样做: 从1开始,对满足条件的数递归枚举它增加一位的数,直到超出n,不太好说清楚,具体看代码。

#include<stdio.h>
#include<string.h>
int num[15];
int sum,n;
int check(__int64 x)
{
   int ans=0;
   memset(num,0,sizeof(num));
   while(x)
   {
      if(!num[x%10])
           ans++;
      num[x%10]++;
      x/=10;
   }
   return ans<=2;
}
void count(__int64 k)
{  
   int i,t;
   if(k>n)
	   return ;
   t=k>0?0:1;
   if(check(k))
   {
      for(i=t;i<10;i++)
           count(k*10+i);
      sum++;
   }
}
int main()
{
   while(scanf("%d",&n)!=EOF)
   {  
       sum=0;
       count(0);
       printf("%d\n",sum-1);
   }
   return 0;
}


C:

题意:

 给你 n(1<=n<=10^5) 个数,每个数的范围是 [0, 10^6] ,定义一个函数 f(L, R) :把从第 L 个数取到第 R 个数全部取“或”得到的数,考虑所有的 L 和 R,问你能够得到多少个不同的 f(L, R)

 

解题分析:

 为了表示方便,我先用f[j, i]表示第 j 个元素到第 i 个元素之间所有元素“或”的值,然后有这样一个式子f[j,i]=f[j,k]|f[k+1,i],考虑到新添加一个a[i] ,如果现在已经有了 f[k+1, i+1]==f[k+1, i] ,那么对于所有的 1<=j<=k ,有 f[j, i+1] ==f[j, i]  ,如果再把f 数组化成一维数组,那么我们的所有f[j] , 1<=j<=k 就不用改变,也就是说,在逆向枚举循环j的时候,一旦我们遇到了 f[j]==f[j] | a[i+1] ,我们就可以 break 掉了,这样就比普通暴力n^2优化了很多。

#include<cstdio>
#include<cstring>
#include<set>
using namespace std;
set<int> s;
int num[100005];
int main()
{
    int n,i,j,cur;
    while(scanf("%d",&n)!=EOF)
    {
        s.clear();
        for(i=1;i<=n;i++)
        {
            scanf("%d",&num[i]);
            s.insert(num[i]);
            cur=num[i];
            for(j=i-1;j>=1;j--)
            {
                cur|=num[j];
                if(cur==num[j])
                    break;
                num[j]=cur;
                s.insert(cur);
            }
        }
        printf("%d\n",s.size());
    }
    return 0;
}


 

                未完待续  ···

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值