A : 略。
B:
题意:
求小于等于n的数中,如果该数中不同数字的个数小于等于2,则计数加一。
解题思路:
这题貌似有很多方法,我是这样做: 从1开始,对满足条件的数递归枚举它增加一位的数,直到超出n,不太好说清楚,具体看代码。
#include<stdio.h>
#include<string.h>
int num[15];
int sum,n;
int check(__int64 x)
{
int ans=0;
memset(num,0,sizeof(num));
while(x)
{
if(!num[x%10])
ans++;
num[x%10]++;
x/=10;
}
return ans<=2;
}
void count(__int64 k)
{
int i,t;
if(k>n)
return ;
t=k>0?0:1;
if(check(k))
{
for(i=t;i<10;i++)
count(k*10+i);
sum++;
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
sum=0;
count(0);
printf("%d\n",sum-1);
}
return 0;
}
C:
题意:
给你 n(1<=n<=10^5) 个数,每个数的范围是 [0, 10^6] ,定义一个函数 f(L, R) :把从第 L 个数取到第 R 个数全部取“或”得到的数,考虑所有的 L 和 R,问你能够得到多少个不同的 f(L, R)
解题分析:
为了表示方便,我先用f[j, i]表示第 j 个元素到第 i 个元素之间所有元素“或”的值,然后有这样一个式子f[j,i]=f[j,k]|f[k+1,i],考虑到新添加一个a[i] ,如果现在已经有了 f[k+1, i+1]==f[k+1, i] ,那么对于所有的 1<=j<=k ,有 f[j, i+1] ==f[j, i] ,如果再把f 数组化成一维数组,那么我们的所有f[j] , 1<=j<=k 就不用改变,也就是说,在逆向枚举循环j的时候,一旦我们遇到了 f[j]==f[j] | a[i+1] ,我们就可以 break 掉了,这样就比普通暴力n^2优化了很多。
#include<cstdio>
#include<cstring>
#include<set>
using namespace std;
set<int> s;
int num[100005];
int main()
{
int n,i,j,cur;
while(scanf("%d",&n)!=EOF)
{
s.clear();
for(i=1;i<=n;i++)
{
scanf("%d",&num[i]);
s.insert(num[i]);
cur=num[i];
for(j=i-1;j>=1;j--)
{
cur|=num[j];
if(cur==num[j])
break;
num[j]=cur;
s.insert(cur);
}
}
printf("%d\n",s.size());
}
return 0;
}
未完待续 ···