poj 2728 Desert King

 题目:http://poj.org/problem?id=2728

 题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,建造水管距离为坐标之间的距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小

 这题黑书上生成树第3个例题有介绍

设x[i]等于1或0, 表示边e[i]是否属于生成树.

 则我们所求的比率 r = ∑(cost[i] * x[i]) / ∑(len[i] * x[i]), 0≤i<m .

为了使 r 最大, 设计一个子问题Q(t) 让 z = ∑(cost[i] * x[i]) - t * ∑(len[i] * x[i]) = ∑(d[i] * x[i]) 最大 (d[i] = cost[i] - t* len[i]) , 并记为z(l)。

 则对于一个确定的t,只要求出以d[i]=cost[i]-t*len[i]为边的最大生成树即可。

书上用这个模型的两个性质介绍了二分法。

然后还有一种迭代法,即每次直接把子问题Q(t)的最优解代入z的表达式算出一个新的t',进行下一次迭代,下面的代码就是这种方法。

 

#include<stdio.h>
#include<string.h>
#include<math.h>
#define   Max 99999999
int n,x[1005],y[1005],h[1005];
double cost[1005][1005],dist[1005][1005],dis[1005];
int flag[1005],pre[1005];
double prim(double t)
{
    int i,j,k;
    double min,v,sumcost=0,sumdist=0;
    dis[0]=0;
    memset(flag,0,sizeof(flag));
    memset(pre,0,sizeof(pre));
    for (j=1;j<n;j++)
          dis[j]=cost[j][0]-t*dist[j][0];
    for (i=1;i<n;i++)
    {
          min=Max;
          for (j=1;j<n;j++)
          {
                if (flag[j]==0&& min>dis[j])
                {
                      min=dis[j];
                      k=j;
                }
          }
          flag[k]=1;
          sumcost+=cost[pre[k]][k];
          sumdist+=dist[pre[k]][k];
          for (j=0;j<n;j++)
          {
                if (flag[j]==0)
                {
                      if ((v=cost[k][j]-t*dist[k][j])<dis[j])
                      {
                            dis[j]=v;
                            pre[j]=k;
                      }
                }
          }
    }
    return sumcost/sumdist;
}

int main()
{
    int i,j;
    double p,tp;
    while(scanf("%d",&n)==1&&n)
    {
          for (i=0;i<n;i++)
                scanf("%d%d%d",&x[i],&y[i],&h[i]);
          for (i=0;i<n;i++)
          {
                for (j=i+1;j<n;j++)
                {
                      double temp=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
                      dist[i][j]=sqrt(temp);
                      dist[j][i]=dist[i][j];
                      cost[i][j]=h[i]-h[j];
                      if (cost[i][j]<0)
                            cost[i][j]=-cost[i][j];
                      cost[j][i]=cost[i][j];
                }
          }
          p=0;
          while (1)
          {
                tp=prim(p);
                if (fabs(tp-p)<0.0001)
                      break;
                p=tp;
          }
          printf("%.3lf\n",p);
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值