题目:http://poj.org/problem?id=2728
题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,建造水管距离为坐标之间的距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小
这题黑书上生成树第3个例题有介绍
设x[i]等于1或0, 表示边e[i]是否属于生成树.
则我们所求的比率 r = ∑(cost[i] * x[i]) / ∑(len[i] * x[i]), 0≤i<m .
为了使 r 最大, 设计一个子问题Q(t) 让 z = ∑(cost[i] * x[i]) - t * ∑(len[i] * x[i]) = ∑(d[i] * x[i]) 最大 (d[i] = cost[i] - t* len[i]) , 并记为z(l)。
则对于一个确定的t,只要求出以d[i]=cost[i]-t*len[i]为边的最大生成树即可。
书上用这个模型的两个性质介绍了二分法。
然后还有一种迭代法,即每次直接把子问题Q(t)的最优解代入z的表达式算出一个新的t',进行下一次迭代,下面的代码就是这种方法。
#include<stdio.h>
#include<string.h>
#include<math.h>
#define Max 99999999
int n,x[1005],y[1005],h[1005];
double cost[1005][1005],dist[1005][1005],dis[1005];
int flag[1005],pre[1005];
double prim(double t)
{
int i,j,k;
double min,v,sumcost=0,sumdist=0;
dis[0]=0;
memset(flag,0,sizeof(flag));
memset(pre,0,sizeof(pre));
for (j=1;j<n;j++)
dis[j]=cost[j][0]-t*dist[j][0];
for (i=1;i<n;i++)
{
min=Max;
for (j=1;j<n;j++)
{
if (flag[j]==0&& min>dis[j])
{
min=dis[j];
k=j;
}
}
flag[k]=1;
sumcost+=cost[pre[k]][k];
sumdist+=dist[pre[k]][k];
for (j=0;j<n;j++)
{
if (flag[j]==0)
{
if ((v=cost[k][j]-t*dist[k][j])<dis[j])
{
dis[j]=v;
pre[j]=k;
}
}
}
}
return sumcost/sumdist;
}
int main()
{
int i,j;
double p,tp;
while(scanf("%d",&n)==1&&n)
{
for (i=0;i<n;i++)
scanf("%d%d%d",&x[i],&y[i],&h[i]);
for (i=0;i<n;i++)
{
for (j=i+1;j<n;j++)
{
double temp=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
dist[i][j]=sqrt(temp);
dist[j][i]=dist[i][j];
cost[i][j]=h[i]-h[j];
if (cost[i][j]<0)
cost[i][j]=-cost[i][j];
cost[j][i]=cost[i][j];
}
}
p=0;
while (1)
{
tp=prim(p);
if (fabs(tp-p)<0.0001)
break;
p=tp;
}
printf("%.3lf\n",p);
}
return 0;
}