阿基米德双子圆

http://www.geogebra.org/en/examples/frisbee/worksheets/twin_circles_radius.html


作图的方法这里的介绍更精彩http://www.math.utah.edu/mathcircle/10-17-2007-notes-hanson-arbelos-solutions.pdf



Radius of the Twin Circles

In order to construct the Archimedian Twin Circles we need to know their radius. Right now, we don't know yet if they really both have the same radius, so let's find out!

Left Twin Circle

In the sketch below you see an arbelos with one of the twin circles. You can drag  point N  along the diameter to change the shape of the arbelos.


Your task is to calculate the twin circle's radius  r  in terms of the two small semicircles' radii  a  and b . Note: the large semicircle has center point  M  and its radius is  R = a + b .
  1. Use the Pythagorean theorem for the right triangles CEF and MEF. This lets you express the segment EF in two ways.
    Hint: 
  2. Use the two equations from (1) to get one equation without segment EF.
    Hint: 
  3. Let's now try to get a formula for r in terms of a and b
    Start with writing all segments used in (2) in terms of a, b, r and R.
    Hint 1: 
    Hint 2: 
    Hint 3: 
  4. Now plug your results from (3) into the equation from (2) and solve it to get our twin circle's radius r.
    Hint 1: 
    Hint 2: 

Right Twin Circle

Now you know how to get the radius  r  of the left twin circle. Does the right twin circle have the same radius? Let's make sure and proof it! The construction below shows both twin circles. 
  • Calculate the radius r of the right twin circle by using the same strategy as above. 
  • Do you get the same result?
 

Archimedes' Proof

You would like to know how Archimedes proved that the twin circles have same size? Find out in Proposition 5  of his  Book of Lemmas .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值