复数在初等平面几何问题中的应用案例


http://www.qbyte.org/puzzles/puzzle07.html


Squares are constructed externally on the sides of an arbitrary quadrilateral. Show that the line segments joining the centers of opposite squares lie on perpendicular lines and are of equal length.

任意四边形ABCD的四边为边,在外侧作出到四个正方形; 正方形中心E,F,G,H如图;

证明: 线段EF和GH垂直而且等长;


复数方法假设四个顶点坐标; 并依次求出E,F,G,H...及所对应线段,利用复数的几何意义...

http://www.qbyte.org/puzzles/p062s.html


如何用纯粹几何方法证明呢?

1. 首先证明一个引理

对任意的三角形ABC, M为中点, E,F分别是两边对应正方形的中心, 则EMF是等腰直角三角形;

证明,作辅助线如图, N也是中点; BM延长到G(倍长中线法)

从而ABG全等于CGB全等于BPQ, 从而ABM全等于BPN, BCM全等于QBN

从而得到两个等腰直角三角形: MEN和MFN; 从而ENFM是正方形; 引理得证


2. 应用上面的引理, 

易得EFO全等于HGO,而且恰好一个是另一个绕O点旋转90°; 从而得证原始问题;


再深入看看: http://mathworld.wolfram.com/vanAubelsTheorem.html

1.同时用复数和几何方法证明(几何法跟上面的不同):  http://www.osaka-ue.ac.jp/zemi/nishiyama/math2010/aubel.pdf

2. Flash演示几何证明方法: http://agutie.homestead.com/files/vanaubel.html

3. 这里的复数方法,后面的参考文献也不错: http://www.qbyte.org/puzzles/p062s.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值