由光学到变分演变出来的二阶非线性常微分方程初边值问题

问题是这样的,如图,圆O的半径为3, 圆C半径为1;

O的坐标(0,0), C坐标(-15,0), B的坐标(-14,0)

圆盘O是一个发光源,那么,如果透明介质处处的折光率都是常数,

则从B点观察圆盘O时,可以看到上边界对应于BD,下边界对应BE,都是圆O的切线;


现在假设介质的折光指数是二元函数 n(x,y)



求在这种折光指数连续变化的透明光学介质中,从B点观察发光圆盘O,对应的上边界点和下边界点到B点的光线的路径曲线.


或者, 只求上下边界光线到达B点时它们各自对应的光线曲线的斜率.


Fermat原理, 可以很容易把问题转化成变分问题, 并利用Euler-Lagrange方程把它写成一个二阶非线性常微分方程:


已经知道 y(-14)=0, 只须再知道 y(x)在 x=-14的一阶导数 y'(-14) 即可以容易得到数值解, 问题在于,这个不容易得到;


如果用近似的y'(-14)计算一系列的数值曲线出来,取跟圆O相切的一个也可以,但是太复杂了点;


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值