问题
这是个著名问题, 最初只是觉得好看,不过明显会繁琐,没想到证明这么方便。当然,辅助线还是让人眼花缭乱,如果不是Geogebra作图,效果仍不会太好。
源自: 单墫 数学竞赛教材
FGHIJ 是凸五边形; A,B,C,D,E 是不相邻的边交点。五个圆是五边形的边跟对应的交点组成三角形的外接圆。相邻外接圆之间除了五边形顶点之外还有 F′,G′,H′,I′,J′ 五个交点。证明这另外的五个交点共圆。
证明
∠CFG′=∠CGG′=∠G′AH⇒A,B,F,G′
四点共圆
类似,
A,B,F,J′
四点也共圆; 从而
A,B,F,J′,G′
五点共圆.
又因为:
180o=∠AG′J′+∠J′BA(inscribed quadrilateral)
=(∠AG′H′+∠H′G′J′)+∠J′BA
=∠AHH′+∠H′G′J′+∠II′J′
=∠II′H′+∠H′G′J′+∠II′J′
=∠H′G′J′+∠H′I′J′
∴G′,H′,I′,J′ 四点共圆, 类似地, H′,I′,J′,F′ 也共圆, 这就证明了 F′,G′,H′,I′,J′ 五点共圆.