题目链接
题目背景
“咚咚咚……”“查水表!”原来是查水表来了,现在哪里找这么热心上门的查表员啊!小明感动得热泪盈眶,开起了门……
题目描述
妈妈下班回家,街坊邻居说小明被一群陌生人强行押上了警车!妈妈丰富的经验告诉她小明被带到了 t 区,而自己在 s 区。
该市有 m 条大道连接 n 个区,一条大道将两个区相连接,每个大道有一个拥挤度。小明的妈妈虽然很着急,但是不愿意拥挤的人潮冲乱了她优雅的步伐。所以请你帮她规划一条从 s 至 t 的路线,使得经过道路的拥挤度最大值最小。
输入格式
第一行有四个用空格隔开的 n,m,s,t,其含义见【题目描述】。
接下来 m 行,每行三个整数 u,v,w,表示有一条大道连接区 u 和区 v,且拥挤度为 w。
两个区之间可能存在多条大道。
输出格式
输出一行一个整数,代表最大的拥挤度。
输入输出样例
输入 #1复制
3 3 1 3 1 2 2 2 3 1 1 3 3
输出 #1复制
2
说明/提示
数据规模与约定
- 对于 30% 的数据,保证 n≤10。
- 对于 60% 的数据,保证 n≤100。
- 对于 100% 的数据,保证 1≤n≤104,1≤m≤2×104,w≤104,1≤s,t≤n。且从 s 出发一定能到达 t 区。
样例输入输出 1 解释
小明的妈妈要从 1 号点去 3 号点,最优路线为 1->2->3。
思路:这道题可以这么想,要使拥挤度最大值最小,那么当前结点的拥挤度应该等于前一个结点的拥挤度,与前一节点与当前结点道路的拥挤度的较大值,当然,如果有多条路通往当前结点,应该取多条路里面最小的拥挤度。所以我们可以这么做,先初始化成一个很大的数MAX,如果当前结点为MAX,这意味着第一次访问,直接赋值俩个值中较大那个,如果不等于MAX,则意味着不是第一次访问,与之前的值取小
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e4 + 5;
const int maxm = 2e4 + 5;
const int MAX = 1e9;
struct node{
int to, next, weight;
}edge[maxn << 2];
int head[maxn];
bool vis[maxn];
int dist[maxn];
int cnt = 0;
int n, m, s, t;
void init()
{
fill(head, head + n + 1, -1);
fill(vis, vis + n + 1, false);
fill(dist, dist + n + 1, MAX);
}
void add(int u, int v, int weight)
{
edge[cnt].to = v;
edge[cnt].weight = weight;
edge[cnt].next = head[u];
head[u] = cnt++;
}
struct base{
int dist;
int point;
bool operator < (const base &others)const{
return dist > others.dist;
}
};
void dijkstra()
{
priority_queue<base>q;
dist[s] = 0;
q.push((base){0, s});
while(!q.empty()){
int u = q.top().point;
q.pop();
if(vis[u])continue;
vis[u] = true;
for(int i = head[u]; ~i; i = edge[i].next){
int v = edge[i].to;
int k = max(dist[u], edge[i].weight);//当前结点的拥挤度,通往当前结点道路拥挤度
if(dist[v] == MAX){//第一次访问直接赋值
dist[v] = k;
}
else if(dist[v] != MAX){//非第一次访问,取最小
dist[v] = min(k, dist[v]);
}
q.push((base){dist[v], v});
}
}
}
void slove()
{
scanf("%d%d%d%d", &n, &m, &s, &t);
//再init
init();
while(m--){
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
add(v, u, w);
}
}
int main()
{
//先输入n,m
//再djk
slove();
dijkstra();
printf("%d", dist[t]);
return 0;
}
/*
3 3 1 3
1 2 2
2 3 1
1 3 3
*/