BZOJ4518——二维斜率优化dp

版权声明:我是一只蒟蒻,欢迎大家批评建议 https://blog.csdn.net/stevensonson/article/details/80258612

Description

Pine开始了从S地到T地的征途。
从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站。
Pine计划用m天到达T地。除第m天外,每一天晚上Pine都必须在休息站过夜。所以,一段路必须在同一天中走完。
Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。
帮助Pine求出最小方差是多少。
设方差是v,可以证明,v×m2v×m^2是一个整数。为了避免精度误差,输出结果时输出v×m2v×m^2
Input

第一行两个数 n、m。
第二行 n 个数,表示 n 段路的长度
Output

一个数,最小方差乘以 m^2 后的值

Sample Input

5 2

1 2 5 8 6
Sample Output

36
HINT

1≤n≤3000,保证从 S 到 T 的总路程不超过 30000


这道题要求的是最小的方差的值,所以我们可以想到一个简单的dp方程
f[i][j]=min(f[i][j],f[k][j-1]+(sum[i]-sum[k]-average)²)
其中f[i][j]表示目前到i位置,走了j天的当前最小累计方差值。
那么我们肯定可以用O(N²M)的复杂度来做,直接枚举i,j,k即可。但是这样是过不了这道题的。所以我们进行斜率优化。接下去的推演我就不写了,因为这种方法过不了
注意因为我们要推得DP是二维的,所以进行优化的时候就要for一个m,然后再去循环n的值。并且每次for过一个n后就要将队列清空(重新维护一个凸包)。
然后就有了代码:
因为平均数可能是小数,所以开double,然后因为精度问题luogu上爆了一个点。我也不知道为什么
#include<bits/stdc++.h>
#define MAXN 3005
#define ll long long
using namespace std;
ll read(){
    char c;ll x;while(c=getchar(),c<'0'||c>'9');x=c-'0';
    while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';return x;
}
ll n,m,w,r,a[MAXN],sum[MAXN],q[MAXN];
double ave,f[MAXN][MAXN];
double sqr(double x){return x*x;}
double y(ll i,ll t){return (double)f[i][t-1]+sqr(sum[i])+2*sum[i]*ave;}
double x(ll i){return (double)sum[i];}
double k(ll u,ll v,ll t){
    return (double)(y(u,t)-y(v,t))/(x(u)-x(v));
}
int main()
{
    n=read();m=read();
    for(ll i=1;i<=n;i++) a[i]=read(),sum[i]=sum[i-1]+a[i];
    ave=(double)sum[n]/m;
    for(ll i=1;i<=n;i++) f[i][1]=(double)sqr(sum[i]-ave);
    for(ll i=1;i<=m;i++) f[0][i]=(double)sqr(ave);
    for(ll i=2;i<=m;i++){
        w=r=0;
        for(ll j=1;j<=n;j++){
            while(r<w&&2*sum[j]>k(q[r],q[r+1],i)) r++;
            ll p=q[r];f[j][i]=(double)f[p][i-1]+sqr(sum[j]-sum[p]-ave);
            while(r<w&&k(q[w-1],q[w],i)>k(q[w-1],j,i)) w--;
            q[++w]=j;
        }
    }
    printf("%.0lf",f[n][m]*m);
    return 0;
}
辗转了很久也没有办法,只好去抄网上大佬的题解,结果发现果然有不同的做法。
出题人求的Vm²V*m²真的是另有深意。抱歉,我出题人真的是可以为所欲为的!!!
我们来推式子:
V*m²=∑(Vx-average)²/m*m²
    =∑(Vx-average)²*m
    =m*∑Vx²-2*m*∑Vx*average+average²*m*m   // average=sum[n]/m
    =m*∑Vx²-2*∑Vx*sum[n]+sum[n]²
    =m*∑Vx²-2*sum[n]²+sum[n]²
    =m*∑Vx²-sum[n]²
其中VxVx就是第x天走的路程和,所以我么改变一下dp方程:
f[i][j]表示到i走j天的Vx²Vx²的和
f[i][j]=min(f[i][j],f[k][j-1]+(sum[i]-sum[k])²)
最后答案就是f[n][m]²msum[n]²f[n][m]²*m-sum[n]²
接下去就是欢乐的推式子了:
f[i][j]=f[k][j-1]+sum[i]²-2*sum[i]*sum[k]+sum[k]²
f[i][j]+2*sum[i]*sum[k]=f[k][j-1]+sum[i]²+sum[k]²
  b    +    k   *  x   =         y     
2*sum[i]单调递增,所以我们就用单调队列维护一个下凸包即可。
#include<bits/stdc++.h>
#define ll long long
#define MAXN 3005
using namespace std;
ll read(){
    char c;ll x;while(c=getchar(),c<'0'||c>'9');x=c-'0';
    while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';return x;
}
ll n,m,ave,w,r,a[MAXN],sum[MAXN],f[MAXN][MAXN],q[MAXN];
ll sqr(ll x){return x*x;}
double y(ll i,ll t){return f[i][t-1]+sqr(sum[i]);}
double x(ll i){return sum[i];}
double k(ll u,ll v,ll t){
    return (double)(y(u,t)-y(v,t))/(x(u)-x(v));
}
int main()
{
    n=read();m=read();
    for(ll i=1;i<=n;i++) a[i]=read(),sum[i]=sum[i-1]+a[i];
    for(ll i=1;i<=n;i++) f[i][1]=sqr(sum[i]);
    for(ll i=2;i<=m;i++){
        w=r=0;
        for(ll j=1;j<=n;j++){
            while(r<w&&2*sum[j]>k(q[r],q[r+1],i)) r++;
            ll p=q[r];f[j][i]=f[p][i-1]+sqr(sum[j]-sum[p]);
            while(r<w&&k(q[w-1],q[w],i)>k(q[w-1],j,i)) w--;
            q[++w]=j;
            
        }
    }
    printf("%lld",f[n][m]*m-sqr(sum[n]));
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页