我们知道,线段树实现区间修改和查询可以通过lazy标记来实现
今天学到一个新姿势,树状数组也可以实现区间修改和查询
我们引入delta数组delta[i]表示区间[i, n]的共同增量 于是修改区间[l, r]时修改delta[l]和delta[r + 1]即可
(就是差分的思路)
查询的时候是查询区间 [l, r] 的和 即sum[r] - sum[l - 1] 所以现在的问题是求sum[i]
sum[i] = a[1]+...+a[i] + delta[1]*i + delta[2]*(i - 1) + delta[3]*(i - 2)+...+delta[i]*1 // a[i]为原始数组
= sigma( a[x] ) + sigma( delta[x] * (i + 1 - x) )
= sigma( a[x] ) + (i + 1) * sigma( delta[x] ) - sigma( delta[x] * x )
其中 sigma( a[x] ) 是可以预处理出来的 于是只需要维护 delta[x] 与 delta[x] * x 的前缀和(作为两个树状数组就可以了)
#include <cstdio>
#include <iostream>
#define lowbit(i) (i & (-i))
using namespace std;
int readint()
{
int sign = 1, n = 0; char c = getchar();
while(c < '0' || c > '9'){ if(c == '-') sign = -1; c = getchar(); }
while(c >= '0' && c <= '9') { n = n*10 + c-'0'; c = getchar(); }
return sign*n;
}
const int Nmax = 200100;
int N, Q;
long long delta[Nmax]; // delta的前缀和
long long deltai[Nmax]; // delta * i的前缀和
long long sum[Nmax]; // 原始前缀和
long long Query(long long *array, int pos)
{
long long temp = 0ll;
while(pos > 0)
{
temp += array[pos];
pos -= lowbit(pos);
}
return temp;
}
void Update(long long *array, int pos, int x)
{
while(pos <= N)
{
array[pos] += x;
pos += lowbit(pos);
}
}
int main()
{
N = readint();
for(int i = 1; i <= N; ++i)
{
int x = readint();
sum[i] = sum[i - 1] + x;
}
Q = readint();
while(Q--)
{
int sign = readint();
if(sign == 1) // 修改:把[l, r]区间均加上x
{
int l = readint(), r = readint(), x = readint();
Update(delta, l, x);
Update(delta, r+1, -x);
Update(deltai, l, x * l);
Update(deltai, r+1, -x * (r+1));
}
else // 查询:[l, r]区间和
{
int l = readint(), r = readint();
long long suml = sum[l - 1] + l * Query(delta, l - 1) - Query(deltai, l - 1);
long long sumr = sum[r] + (r + 1) * Query(delta, r) - Query(deltai, r);
printf("%lld\n", sumr - suml);
}
}
return 0;
}