
一、问题引入(痛点场景)
真题溯源:洛谷P2392 kkksc03考前临时抱佛脚
用户痛点:
"如何将题目合理分配给左右大脑?如何最小化完成时间?s≤20时如何避免指数级复杂度?"
这是典型的任务分配优化问题,在CSP-J/S竞赛中考查选手的动态规划思维和问题建模能力。题目核心是将每科的题目分配给左右大脑,使得完成时间最短。
竞赛价值:此类任务分配问题在近年竞赛中出现频率较高,占分约10-15分,是必须掌握的优化算法题型。
二、核心算法分析
2.1 问题本质:最小化最大负载
关键洞察:
- 左右大脑可以同时处理同一科目的题目
- 完成时间由较慢的大脑决定(最大负载)
- 目标是最小化每科的最大负载之和

2.2 算法思路详解
01背包建模:
- 背包容量:总时间的一半(sum/2)
- 物品价值:每道题的耗时
- 目标:找到最接近sum/2的分配方案
- 最短时间 = max(左脑时间, 右脑时间) = max(dp[sum/2], sum - dp[sum/2])
三、代码实现详解
3.1 标准解法(01背包优化)
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
int main() {
int s1, s2, s3, s4;
cin >> s1 >> s2 >> s3 >> s4;
int total_time = 0;
// 处理每一科
for (int subject = 0; subject < 4; subject++) {
int n;
if (subject == 0) n = s1;
else if (subject == 1) n = s2;
else if (subject == 2) n = s3;
else n = s4;
vector<int> times(n);
int sum = 0;
// 读取当前科目的题目耗时
for (int i = 0; i < n; i++) {
cin >> times[i];
sum += times[i];
}
// 01背包:寻找最接近sum/2的分配
vector<bool> dp(sum / 2 + 1, false);
dp[0] = true;
for (int i = 0; i < n; i++) {
for (int j = sum / 2; j >= times[i]; j--) {
if (dp[j - times[i]]) {
dp[j] = true;
}
}
}
// 找到最接近sum/2的可达时间
int left_time = 0;
for (int j = sum / 2; j >= 0; j--) {
if (dp[j]) {
left_time = j;
break;
}
}
int right_time = sum - left_time;
total_time += max(left_time, right_time);
}
cout << total_time << endl;
return 0;
}
3.2 优化解法(bitset优化)
#include <iostream>
#include <vector>
#include <bitset>
#include <algorithm>
using namespace std;
const int MAX_SUM = 1200; // 20×60=1200
int main() {
int s[4];
cin >> s[0] >> s[1] >> s[2] >> s[3];
int total = 0;
for (int subject = 0; subject < 4; subject++) {
vector<int> times(s[subject]);
int sum = 0;
for (int i = 0; i < s[subject]; i++) {
cin >> times[i];
sum += times[i];
}
// 使用bitset优化空间和时间
bitset<MAX_SUM + 1> dp;
dp[0] = 1;
for (int time : times) {
dp |= dp << time;
}
// 寻找最接近sum/2的可行解
int best = 0;
for (int j = sum / 2; j >= 0; j--) {
if (dp[j]) {
best = j;
break;
}
}
total += max(best, sum - best);
}
cout << total << endl;
return 0;
}
四、算法原理深度解析
4.1 01背包问题转化
问题等价性:
- 左脑时间:背包中物品的重量和
- 右脑时间:总重量 - 背包重量
- 目标:min(max(背包重量, 总重量-背包重量))
数学证明:
设总重量为S,背包重量为x
完成时间 = max(x, S-x)
当x接近S/2时,max(x, S-x)最小
4.2 复杂度分析
时间复杂度:O(n×sum)
- 每科:n次循环,sum次操作
- 最坏情况:20×1200=24000次操作
- 四科总计:4×24000=96000次操作
空间复杂度:O(sum)
- 使用一维dp数组或bitset优化
五、避坑指南与调试技巧
5.1 常见错误分析
错误1:dp数组初始化错误
// 错误:忘记初始化dp[0]=true
vector<bool> dp(sum/2+1, false);
// 缺少dp[0]=true;
// 正确:确保0重量是可达的
dp[0] = true;
错误2:背包循环顺序错误
// 错误:正序循环导致物品重复使用
for (int j = times[i]; j <= sum/2; j++) { // 错误!
// 正确:逆序循环保证01背包性质
for (int j = sum/2; j >= times[i]; j--) {
if (dp[j - times[i]]) {
dp[j] = true;
}
}
5.2 测试用例验证
void testCases() {
// 用例1:题目样例
// 科目1:[5] → 时间5
// 科目2:[4,3] → 最佳分配:4 vs 3 → 时间4
// 科目3:[6] → 时间6
// 科目4:[2,4,3] → 最佳分配:2+3=5 vs 4 → 时间5
// 总计:5+4+6+5=20 ✓
// 用例2:单题目科目
// 用例3:全相同耗时题目
// 用例4:边界值测试s=20, time=60
}
六、性能优化建议
6.1 bitset优化技巧
位运算加速:
bitset<MAX_SUM> dp;
dp[0] = 1;
for (int time : times) {
dp |= dp << time; // 位运算并行处理
}
6.2 内存访问优化
局部变量缓存:
for (int subject = 0; subject < 4; subject++) {
int n = s[subject]; // 缓存当前科目题目数
vector<int> local_times = times[subject]; // 局部拷贝
// ... 处理逻辑
}
七、竞赛应用与扩展
7.1 同类题型推荐
- 洛谷P1048:采药(01背包基础)
- 洛谷P1060:开心的金明(01背包应用)
- 洛谷P1510:精卫填海(背包变形)
7.2 算法思维拓展
从双脑分配到更复杂问题:
- 掌握01背包的问题建模技巧
- 理解最小化最大值的优化思想
- 学会使用bitset进行状态压缩
竞赛技巧提升:
- 熟练识别背包问题变种
- 掌握空间优化技巧
- 注意边界条件和初始化
🔥 关注我,解锁CSP-J/S竞赛全攻略 🔥
(每日更新高频考点 + 精选真题解析,助你轻松备赛!)
👇 点击关注 → 立即提升竞赛战力 👇
[https://blog.csdn.net/stillwatersss]
📚 专栏亮点抢先看
-
高频考点突破
- 每日一题:精选洛谷/LeetCode CSP-J/S经典真题,附详细题解与时间复杂度优化技巧
- 考点拆解:动态规划、图论、字符串算法等核心专题深度剖析,直击竞赛命题规律
- 实战模板:限时领取《C++竞赛模板大全》👉 关注后私信回复“模板”获取
-
备赛效率翻倍技巧
- 从O(n²)到O(n):独家算法优化套路,解决TLE超时问题
- 考场避坑指南:常见失分点分析 + 数据边界处理技巧
- 互动答疑:评论区留言题目编号,优先解析你的个性化难题
-
独家福利🌟
- 粉丝专享:高价值文章设为 “仅粉丝可见”(如《CSP-J/S近5年考点分布与预测》)
- 资料包:关注后私信 “资料” 领取 竞赛真题库+调试代码工具包
💡 为什么值得关注?
✅ 数据驱动:内容基于CSP-J/S真题大数据,命中率超80%
✅ 即学即用:每篇附可运行代码(代码通过洛谷测评)与测试用例
✅ 垂直领域:专注竞赛辅导,拒绝泛技术水文,直击备赛痛点
📢 今日关注福利:前100名新粉丝回复【进阶】赠送《洛谷青铜~黄金段位进阶题库》📘
🔥 行动提示:点击主页 → 专栏 → 开启订阅更新,系统自动推送最新解析!

被折叠的 条评论
为什么被折叠?



