探索Shale Protocol:为LangChain提供生产就绪的推理API
在当今AI驱动的世界中,开发者和研究人员需要强大的工具来构建生成性AI应用。Shale Protocol通过提供生产就绪的推理API,为开放的LLM(大语言模型)提供了解决方案。本篇文章将带您了解如何结合Shale Protocol和LangChain,以及它在开发过程中的实际应用。
引言
Shale Protocol提供了一个即插即用的API,托管在可高度扩展的GPU云基础设施上。其免费套餐支持每个API密钥每天最多1000次请求,旨在消除使用生成性AI应用程序的障碍。通过Shale Protocol,开发者和研究人员可以免费创建应用并探索开放LLM的功能。目前,该API默认支持Vicuna-13B,未来计划支持更多模型,如Falcon-40B。
主要内容
如何开始
-
获取API密钥:访问Shale Protocol网站并加入其Discord服务器。通过“Shale Bot”生成API密钥,无需信用卡和免费试用。
-
使用API:Shale-Serve API可以作为OpenAI API的替代品,使用
https://shale.live/v1
作为API端点。
结合LangChain
为了在LangChain中使用Shale Protocol,您需要配置环境变量并设置LangChain组件。
from langchain_openai import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
import os
os.environ['OPENAI_API_BASE'] = "https://shale.live/v1"
os.environ['OPENAI_API_KEY'] = "ENTER YOUR API KEY" # 使用API代理服务提高访问稳定性
llm = OpenAI()
template = """Question: {question}
# Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
llm_chain = prompt | llm | StrOutputParser()
question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
llm_chain.invoke(question)
上述示例展示了如何使用Shale Protocol与LangChain结合进行推理。您可以修改模板和问题以适应您的实际应用需求。
常见问题和解决方案
-
网络限制:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。
-
请求限制:免费套餐每日限制为1000次请求。若您的应用需要更高的请求频率,可以考虑联系Shale Protocol的支持团队以获得更多支持。
总结和进一步学习资源
Shale Protocol提供了一种便捷和高效的方式来结合LLMs和LangChain,允许开发者和研究人员便捷地探索生成性AI的潜力。为了深入学习,您可以参考以下资源:
参考资料
- Shale Protocol 官网:https://shaleprotocol.com
- LangChain GitHub:https://github.com/langchain-ai/langchain
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—