1. 引言
工业设备故障导致的生产停滞问题日益突出,传统人工巡检方式效率低且难以捕捉早期隐患。本文设计了一款基于STM32的智能工业设备健康监测系统,通过振动分析、温度监测与声纹识别技术,实现设备状态实时评估、故障预警与维护决策支持,推动预测性维护模式发展。
2. 系统设计
2.1 硬件设计
-
主控芯片:STM32H743VI,配备双精度FPU与2MB RAM
-
感知模块:
-
三轴加速度计(ADXL345):采集振动信号(±16g)
-
红外热像仪(MLX90640):监测设备表面温度分布
-
MEMS麦克风(SPH0645):捕捉运行噪声(20-20kHz)
-
电流互感器(SCT-013):检测电机电流谐波
-
-
边缘计算模块:
-
FPGA协处理器(Artix-7):加速FFT运算
-
大容量SD卡:存储原始波形数据
-
-
通信模块:
-
工业以太网(LAN8720):连接工厂MES系统
-
5G模组(FM650):支持远程专家诊断
</
-