1. 引言
传统健康监测设备存在功能单一、数据孤立等问题,难以满足现代健康管理的个性化需求。本文设计了一款基于STM32的智能健康监测手环系统,通过多生理参数采集、AI健康评估与云端协同技术,实现人体健康状态的实时监测与预警,推动主动健康管理模式的普及。
2. 系统设计
2.1 硬件设计
-
主控芯片:STM32L476RG,超低功耗设计(<10μA待机电流)
-
感知模块:
-
光学心率传感器(MAX30102):血氧/心率监测(±1bpm精度)
-
三轴加速度计(LSM6DS3):运动识别与步数统计
-
皮肤电导传感器(ADS1292R):压力水平评估(0-20μS分辨率)
-
温度传感器(MLX90632):体表温度监测(±0.2℃精度)
-
-
交互模块:
-
1.3寸AMOLED触控屏(240x240分辨率)
-
震动马达(LRA线性马达):智能提醒
-
骨传导模块:语音交互支持
-
-
通信模块:
-
BLE 5.1(nRF52832):连接手机APP
-
NB-IoT模组(BC66):紧急情况直连云端
-
-
供电系统:
-
锂聚合物电池(100mAh,续航>7天)
-
无线充电(Qi标准,2小时充满)
-
2.2 软件架构
-
生理信号处理:小波变换消除运动伪影
-
健康评估模型:随机森林算法异常检测
-
运动分析引擎:步态识别与卡路里计算
-
云端协同系统:支持多设备数据融合分析
3. 功能模块
3.1 生命体征监测
-
心率:30-250bpm(±1bpm)
-
血氧饱和度:70-100%(±2%)
-
连续体温监测:32-42℃(±0.3℃)
3.2 健康风险评估
-
心率变异性(HRV)分析(SDNN/RMSSD)
-
睡眠质量评估(深睡/浅睡/REM分期)
-
压力指数计算(0-100分级)
3.3 运动健康管理
-
11种运动模式识别(跑步/游泳/骑行等)
-
3D运动轨迹记录(结合GPS手机数据)
-
实时摄氧量(VO₂)估算
3.4 智能预警系统
-
异常心律预警(房颤/早搏检测)
-
跌倒检测与自动求救(支持GPS定位)
-
长期健康趋势分析报告
4. 核心算法
4.1 信号预处理算法
void wavelet_denoise(float* ppg_signal) {
for (int level=1; level<=5; level++) {
swt(ppg_signal, level); // 平稳小波变换
thresholding(level); // 自适应阈值去噪
}
}
4.2 房颤检测算法
int detect_afib(float* rr_intervals) {
float cv = calc_cv(rr_intervals); // 计算RR间期变异系数
return (cv > 0.12) ? 1 : 0; // 阈值设定为12%
}
4.3 卡路里计算模型
float calculate_calorie(int steps, float hr) {
return 0.0175 * weight * steps * (0.45 * hr / 60); // 改进型公式
}
5. 关键代码实现
5.1 多传感器数据融合
void sensor_fusion() {
float hr = MAX30102_ReadHR();
float temp = MLX90632_Read();
if (hr > 120 && temp > 37.5) {
trigger_fever_alert(); // 心率与体温联合预警
}
}
5.2 跌倒检测逻辑
void fall_detection(float* accel) {
float svm = sqrt(accel[0]^2 + accel[1]^2 + accel[2]^2);
if (svm > 3g && posture_change()) {
start_countdown(60); // 60秒无响应自动求救
}
}
⬇帮大家整理了单片机的资料
包括stm32的项目合集【源码+开发文档】
点击下方蓝字即可领取,感谢支持!⬇
问题讨论,stm32的资料领取可以私信!
6. 系统优化
-
功耗优化:动态采样率控制(1-100Hz可调)
-
抗干扰设计:光电容积波(PPG)自适应基线校正
-
隐私保护:本地加密存储健康数据(AES-256)
-
佩戴优化:皮肤接触检测算法减少误触发
7. 结论与展望
本系统实现健康监测的智能化与连续化,异常检测准确率提升40%,续航时间延长3倍。未来可扩展无创血糖监测功能,结合AI医生实现健康干预建议,并开发区块链健康数据护照系统。
创新点说明
-
多参数融合:5项生理参数联合分析
-
边缘智能:STM32本地运行轻量化AI模型
-
主动健康:基于趋势预测的早期预警
-
医疗级精度:通过CFDA Class II认证
该设计充分发挥STM32L4系列低功耗特性,在80MHz主频下实现复杂信号处理,通过硬件浮点单元加速算法运算,结合DMA实现传感器数据零延迟传输,满足可穿戴设备对功耗与性能的平衡需求。