POJ3228题解(c++,并查集)
题意理解:
题干的大致意思就是想搬运黄金到仓库,跑最短的路完成搬运的任务。
给出整数N,代表城市的个数,输入两行,第一行代表黄金所在的城市以及黄金的数量,第二行代表仓库所在的城市以及数量,再输入一个整数M,输入M行表示,城市1和城市2之间是联通的,距离是z。
输出最短的路线中相邻结点间距离最大的,output the minimum of the maximum adjacent distance,这句话搞得是一头雾水刚开始,实在是不理解。
注意是多输入问题,N为0结束输入,好了以上就是题意的理解,那么如何解决这个题目呢。
题目分析:
- 先分析没有解决方案的情况:不难理解
1.黄金所在的城市和仓库所在的城市无法联通,不属于一个联通分支。
2.黄金的数量大于仓库的容量 - 有方案的情况请看代码
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
struct node{
public:
int start;
int end;
int dis;
}edge[20001];
int p[201];
int cmp(node a,node b)
{
return a.dis<b.dis;
}
int find(int x)
{
return p[x]==x?x:p[x]=find(p[x]);
}
int main()
{
int n;
while(cin>>n&&n!=0)
{
int gold[201]={0};
int store[201]={0};
int sum[201]={0};
int flag=1;
for(int i=1;i<=n;i++)
{
cin>>gold[i];
}
for(int i=1;i<=n;i++)
{
cin>>store[i];
}
int m;
cin>>m;
for(int i=1;i<=m;i++)
{
cin>>edge[i].start>>edge[i].end>>edge[i].dis;
}
sort(edge+1,edge+m+1,cmp);
for(int i=1;i<=m;i++)
{
for(int i=1;i<=n;i++)
{
//sum[i]=0;
p[i]=i;
}
for(int k=1;k<=i;k++)
{
int x=find(edge[k].start);
int y=find(edge[k].end);
if(x!=y)
{
p[x]=y;//可以考虑一下秩如果优化的话。
}
}
for(int i=1;i<=n;i++)
{
sum[i]=0;
//p[i]=i;
}
for(int i=1;i<=n;i++)
{
int temp=find(i);
sum[temp]+=(gold[i]-store[i]);
}
flag=1;
for(int i=1;i<=n;i++)
{
if(sum[i]>0)
{
flag=0;
}
}
if(flag==1)
{
cout<<edge[i].dis<<endl;
break;
}
}
if(flag==0)
{
cout<<"No Solution"<<endl;
}
}
return 0;
}
做题总结:
这个题也是花费了好长时间没有思路,想了最小生成树等等,这个思路还真的是耳目一新,颇有收获。
先将边按从小到大的顺序排序,逐渐加边,看看是否能令这些黄金装入仓库,能的话当前的边就是最大值。